Bismuth-based Nanoribbons Show 'Topological' Transport, Potential for New Technologies
January 20, 2016 | Purdue UniversityEstimated reading time: 5 minutes
Researchers have created nanoribbons of an emerging class of materials called topological insulators and used a magnetic field to control their semiconductor properties, a step toward harnessing the technology to study exotic physics and building new spintronic devices or quantum computers.
Unlike ordinary materials that are either insulators or conductors, topological insulators are paradoxically both at the same time - they are insulators inside but conduct electricity on the surface, said Yong P. Chen, a Purdue University associate professor of physics and astronomy and electrical and computer engineering who worked with doctoral student Luis A. Jauregui and other researchers.
The materials might be used for "spintronic" devices and practical quantum computers far more powerful than today's technologies. In the new findings, the researchers used a magnetic field to induce a so-called “helical mode” of electrons, a capability that could make it possible to control the spin state of electrons.
The findings are detailed in a research paper that appeared in the advance online publication of the journal Nature Nanotechnology on Jan. 18 and showed that a magnetic field can be used to induce the nanoribbons to undergo a “topological transition,” switching between a material possessing a band gap on the surface and one that does not.
“Silicon is a semiconductor, meaning it has a band gap, a trait that is needed to switch on and off the conduction, the basis for silicon-based digital transistors to store and process information in binary code,” Chen said. “Copper is a metal, meaning it has no band gap and is always a good conductor. In both cases the presence or absence of a band gap is a fixed property. What is weird about the surface of these materials is that you can control whether it has a band gap or not just by applying a magnetic field, so it’s kind of tunable, and this transition is periodic in the magnetic field, so you can drive it through many ‘gapped’ and ‘gapless’ states.”
The nanoribbons are made of bismuth telluride, the material behind solid-state cooling technologies such as commercial thermoelectric refrigerators.
“Bismuth telluride has been the workhorse material of thermoelectric cooling for decades, but just in the last few years people found this material and related materials have this amazing additional property of being topological insulators,” he said.
Page 1 of 3
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.