Governments often offer subsidies to consumers for clean-technology products, from home solar panels to electric vehicles. But what are the right levels of subsidy, and how should they be calculated? As a new paper co-authored by MIT researchers shows, governments can easily make subsidies too low when they ignore a basic problem: Consumer demand for these products is usually highly uncertain.
Indeed, the paper’s analysis suggests this has already happened in the case of the Chevy Volt, an electric car introduced in 2010 that suffered slow initial sales before gaining more traction in the marketplace.
“The government will miss their target by a lot when ignoring demand uncertainty,” says Georgia Perakis, the William F. Pounds Professor of Management at the MIT Sloan School of Management and a co-author of the paper.
While discussion of “demand uncertainty” might sound a bit abstract, it matters. Governments usually provide subsidies based on overall adoption targets, such as the number of cars or solar panels they would like to see adopted over a period of time. But green technologies are often new products, and no one really knows how many consumers are waiting to buy them.
Some models of subsidies assume a steady ratio between the dollar amount of the subsidy and the total number of cars or solar panels that will be sold. But as the new paper indicates, that’s not quite the right approach. Given uncertain markets, subsidy levels don’t correlate steadily with sales. Instead, it takes relatively high subsidy levels to kick-start a certain amount of business; then a more gradual increase can help achieve higher sales.
For clean technologies, the research project shows, these increased subsidies should still pay for themselves even at higher levels, when issues such as reductions in pollution, which lead to lower health-care costs, are factored in.
The paper, “The Impact of Demand Uncertainty on Consumer Subsidies for Green Technology Adoption,” has been published online by Management Science. The co-authors are Perakis; Maxime C. Cohen PhD ’15, an assistant professor at New York University; and Ruben Lobel PhD ’12, an assistant professor at the University of Pennsylvania.
Page 1 of 2
Suggested Items
Incap Helps Develop Future Talent in Robotics and Engineering in Finland
05/21/2025 | IncapIncap Corporation continues to invest in the next generation of technology professionals in Finland through its involvement in two national initiatives focused on technical and vocational education.
Jabil, AVL Collaborate on Design and Manufacturing Solutions for Automotive and Transportation Customers
05/21/2025 | BUSINESS WIREJabil Inc., a global manufacturing solutions provider to market-leading automakers, announced it has signed a memorandum of understanding (MOU) with AVL Software and Functions GmbH, the e-drive and software center of AVL List GmbH.
Altus, Danutek Expand Partnership with LPKF to Offer Laser Plastic Welding Solutions
05/21/2025 | Altus GroupAltus Group, a leading supplier of capital equipment and service support for the electronics manufacturing sector in the UK and Ireland, and its sister company Danutek, which serves Central and Eastern Europe, are expanding their technology offering through an enhanced partnership with LPKF, a specialist in laser-based manufacturing solutions.
Deca Announces Agreement with IBM to Bring High-Density Fan-Out Interposer Production to North America
05/20/2025 | Deca TechnologiesDeca Technologies announced the signing of an agreement with IBM to implement Deca’s M-Series™ and Adaptive Patterning® technologies in IBM’s advanced packaging facility in Bromont, Quebec.
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.