Researchers Go for the Gold on a Single Chip
January 25, 2016 | Lawrence Livermore National LaboratoryEstimated reading time: 2 minutes
Lawrence Livermore National Laboratory researchers have created a library of nanoporous gold structures on a single chip that has direct applications for high-capacity lithium ion batteries as well as neural interfaces.
Nanoporous gold (np-Au), a porous metal used in energy and biomedical research, is produced through an alloy corrosion process known as dealloying that generates a characteristic three-dimensional nanoscale network of pores and ligaments.
In the cover article in the Jan. 14 issue of Nanoscale (link is external), a journal published by the Royal Society of Chemistry, LLNL researchers and their University of California, Davis (link is external) collaborators describe a method for creating a library of varying np-Au morphologies on a single chip via precise delivery of tunable laser energy. UC Davis professor Erkin Seker served as the principal investigator (PI) of the UC Fees project that primarily funded the work, along with co-PI Monika Biener of LLNL’s Materials Science Division.
Laser microprocessing (e.g. micromachining) provides spatial and temporal control while imposing energy near the surface of the material.
“Traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip,” said LLNL staff scientist Ibo Matthews, co-author of the paper. “Laser microprocessing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution.”
The researchers used multiphysics simulations to predict the effects of continuous wave vs. pulsed laser mode and varying thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing.
They were then able to fabricate an on-chip material library consisting of 81 np-Au samples of nine different morphologies for use in the parallel study of structure–property relationships.
“These libraries have the potential to drastically increase the throughput of morphology interaction studies for np-Au, specifically in applications such as high capacity lithium ion batteries, cell-material interaction studies for neural interfaces, analytical biosensors, as well as nanoscale material science studies,” said Biener, co-author of the paper.
This work sets the foundation for understanding laser-based annealing of porous thin film materials. The fabrication of single chip material libraries has the potential to increase the throughput of material interaction testing in many disciplines through easy single-chip material screening libraries.
LLNL’s Juergen Biener of the Material Sciences Division collaborated on the work along with UC Davis researchers Christopher Chapman (lead author) and Ling Wang.
This work was funded by UC Lab Fees, National Science Foundation and National Institutes of Health.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
Alternative Manufacturing, Inc. (AMI) Announces Commitment to Excellence in Industrial, Defense, Aerospace, Renewables, and Robotics Markets
09/16/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing, Inc. (AMI), a 100% employee-owned contract manufacturer, proudly reaffirms its leadership in the electronics manufacturing services (EMS) industry with a continued commitment to delivering high-quality PCBAs and box builds across the industrial, defense, aerospace, renewable energy, and robotics markets.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
Hitachi Unveils $1B U.S. Investment in Critical Grid Infrastructure
09/05/2025 | Hitachi EnergyHitachi Energy, a wholly owned subsidiary of Hitachi, Ltd., and global leader in electrification, today announced a historic investment of more than $1 billion USD to expand the production of critical electrical grid infrastructure in the United States.
Ferric Launches New Integrated Voltage Regulator for AI and High-Performance Processors
08/27/2025 | BUSINESS WIREFe1766 delivers an unprecedented 160 A in the industry’s smallest IVR footprint, redefining chip-level and system-level power delivery for the AI era.