Researchers Go for the Gold on a Single Chip
January 25, 2016 | Lawrence Livermore National LaboratoryEstimated reading time: 2 minutes
Lawrence Livermore National Laboratory researchers have created a library of nanoporous gold structures on a single chip that has direct applications for high-capacity lithium ion batteries as well as neural interfaces.
Nanoporous gold (np-Au), a porous metal used in energy and biomedical research, is produced through an alloy corrosion process known as dealloying that generates a characteristic three-dimensional nanoscale network of pores and ligaments.
In the cover article in the Jan. 14 issue of Nanoscale (link is external), a journal published by the Royal Society of Chemistry, LLNL researchers and their University of California, Davis (link is external) collaborators describe a method for creating a library of varying np-Au morphologies on a single chip via precise delivery of tunable laser energy. UC Davis professor Erkin Seker served as the principal investigator (PI) of the UC Fees project that primarily funded the work, along with co-PI Monika Biener of LLNL’s Materials Science Division.
Laser microprocessing (e.g. micromachining) provides spatial and temporal control while imposing energy near the surface of the material.
“Traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip,” said LLNL staff scientist Ibo Matthews, co-author of the paper. “Laser microprocessing offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution.”
The researchers used multiphysics simulations to predict the effects of continuous wave vs. pulsed laser mode and varying thermal conductivity of the supporting substrate on the local np-Au film temperatures during photothermal annealing.
They were then able to fabricate an on-chip material library consisting of 81 np-Au samples of nine different morphologies for use in the parallel study of structure–property relationships.
“These libraries have the potential to drastically increase the throughput of morphology interaction studies for np-Au, specifically in applications such as high capacity lithium ion batteries, cell-material interaction studies for neural interfaces, analytical biosensors, as well as nanoscale material science studies,” said Biener, co-author of the paper.
This work sets the foundation for understanding laser-based annealing of porous thin film materials. The fabrication of single chip material libraries has the potential to increase the throughput of material interaction testing in many disciplines through easy single-chip material screening libraries.
LLNL’s Juergen Biener of the Material Sciences Division collaborated on the work along with UC Davis researchers Christopher Chapman (lead author) and Ling Wang.
This work was funded by UC Lab Fees, National Science Foundation and National Institutes of Health.
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Hikrobot Integrates Wiferion Technology Into AMRs
04/30/2025 | HikrobotIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
Hikrobot Integrates Wiferion Technology into AMRs
04/29/2025 | WiferionIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
CCL Design, Ynvisible Announce Strategic Partnership to Deliver Scalable Printed Display Solutions
04/28/2025 | CCL DesignCCL Design will integrate Ynvisible's proprietary display technology into its global manufacturing infrastructure and technology portfolio.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.