UC Davis Photonics Technology Helps Shrink Telescopes
January 25, 2016 | UC DavisEstimated reading time: 3 minutes
Yoo’s laboratory works on various devices and circuits that use light for ultra-high-capacity image processing, computing and networking. He was initially approached by Lockheed Martin about the SPIDER project at the recommendation of DARPA, the Defense Advanced Research Projects Agency, which has funded a number of research projects in Yoo’s laboratory.
For the SPIDER project, “we’ve fabricated a chip that can collect the fringes and form images in three bands of wavelengths,” Yoo said. Behind each lens are multiple waveguides that gather light from a wider field of view. Each pair of waveguides at a given band of wavelengths will form fringes. The amplitude and phase of the fringes will be processed to construct a digital image for each color.
A thin, photonic integrated circuit containing many waveguides together with many miniature lenses can create high resolution images without resorting to a large telescope structure such as Hubble telescope, Yoo said.
Much as thin displays have replaced bulky old television sets, SPIDER imaging technology could reduce the size, weight and power needs for telescopes by 10 to 100-fold. That could make a big difference for commercial and government satellites alike. The technology also promises to be more robust and flexible than complex lenses and mirrors.
The future looks bright (and light)
Yoo’s team fabricated their prototype photonic chips with facilities at the UC Davis College of Engineering’s Center for Nano-MicroManufacturing. The next generation of chips will be built with three-dimensional laser inscription — using an ultrafast laser to write waveguides of any shape within a solid piece of glass, using apparatus developed in Yoo’s lab.
While the SPIDER prototype today is still in its early stages with less than 100 waveguides, Yoo expects that the new generation of photonic integrated circuits created by three-dimensional laser inscription will enable highly functional and densely integrated systems.
Large-scale manufacturing of such photonic integrated circuits based on UC Davis’ technologies can leverage a newly launched institute, the American Institute for Manufacturing Integrated Photonics (AIM Photonics). UC Davis is one of the Tier-1 members of AIM Photonics, a partnership between industry, universities and government agencies formally announced by Vice President Joe Biden in July 2015. The goal of the institute is to create a national manufacturing infrastructure for photonic integrated circuits, widely accessible and inherently flexible to meet the challenges of the marketplace with practical, innovative solutions.
Suggested Items
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.
New High Power 3D AXI for Power Electronics from Test Research, Inc.
04/17/2025 | TRITest Research, Inc. (TRI), a leading provider of Test and Inspection solutions for the electronics manufacturing industry, proudly announces the launch of the 3D AXI TR7600HP system. Designed for power semiconductor inspection, the TR7600HP enhances accuracy and efficiency in detecting defects in components such as IGBTs, MOSFETs, SiC inverters, and Paladin Connectors.
Real Time with... IPC APEX EXPO 2025: MivaTek is Revolutionizing Circuit Board Manufacturing with DART Technology
04/02/2025 | Real Time with...IPC APEX EXPOBrendan Hogan from MivaTek Global discusses the company's focus on direct imaging for circuit boards and semiconductors. MivaTek is introducing DART technology for dynamic feature size adjustments. This technology enhances precision, improving registration and throughput.