UC Davis Photonics Technology Helps Shrink Telescopes
January 25, 2016 | UC DavisEstimated reading time: 3 minutes
Yoo’s laboratory works on various devices and circuits that use light for ultra-high-capacity image processing, computing and networking. He was initially approached by Lockheed Martin about the SPIDER project at the recommendation of DARPA, the Defense Advanced Research Projects Agency, which has funded a number of research projects in Yoo’s laboratory.
For the SPIDER project, “we’ve fabricated a chip that can collect the fringes and form images in three bands of wavelengths,” Yoo said. Behind each lens are multiple waveguides that gather light from a wider field of view. Each pair of waveguides at a given band of wavelengths will form fringes. The amplitude and phase of the fringes will be processed to construct a digital image for each color.
A thin, photonic integrated circuit containing many waveguides together with many miniature lenses can create high resolution images without resorting to a large telescope structure such as Hubble telescope, Yoo said.
Much as thin displays have replaced bulky old television sets, SPIDER imaging technology could reduce the size, weight and power needs for telescopes by 10 to 100-fold. That could make a big difference for commercial and government satellites alike. The technology also promises to be more robust and flexible than complex lenses and mirrors.
The future looks bright (and light)
Yoo’s team fabricated their prototype photonic chips with facilities at the UC Davis College of Engineering’s Center for Nano-MicroManufacturing. The next generation of chips will be built with three-dimensional laser inscription — using an ultrafast laser to write waveguides of any shape within a solid piece of glass, using apparatus developed in Yoo’s lab.
While the SPIDER prototype today is still in its early stages with less than 100 waveguides, Yoo expects that the new generation of photonic integrated circuits created by three-dimensional laser inscription will enable highly functional and densely integrated systems.
Large-scale manufacturing of such photonic integrated circuits based on UC Davis’ technologies can leverage a newly launched institute, the American Institute for Manufacturing Integrated Photonics (AIM Photonics). UC Davis is one of the Tier-1 members of AIM Photonics, a partnership between industry, universities and government agencies formally announced by Vice President Joe Biden in July 2015. The goal of the institute is to create a national manufacturing infrastructure for photonic integrated circuits, widely accessible and inherently flexible to meet the challenges of the marketplace with practical, innovative solutions.
Suggested Items
Teledyne's Detector Enables NASA's Europa Clipper MISE Instrument
10/21/2024 | TeledyneTeledyne Technologies Incorporated is pleased to announce its contribution to NASA's successful Europa Clipper launch, which took place at NASA's Kennedy Space Center.
Connect the Dots: Designing for Reality—Outer Layer Imaging
09/26/2024 | Matt Stevenson -- Column: Connect the DotsWelcome to the next step in the manufacturing process—the one that gets the chemical engineer in all of us excited. I am referring to outer layer imaging, or how we convert digital designs to physical products. On a recent episode of I-Connect007’s On the Line with… podcast, we explained how the outer layer imaging process maps the design’s unique features onto the board.
Omni Design Technologies Partners with Aura Intelligent Systems on Next Generation Radar
09/16/2024 | BUSINESS WIREOmni Design Technologies, a leading provider of high-performance, low-power data acquisition and signal-processing solutions, and Aura Intelligent Systems, a developer of high-resolution imaging radar for ADAS and autonomous vehicles, announced a partnership on Aura’s next generation digital radar development.
MEMS & Imaging Sensors Summit to Highlight Innovations Driving the Next Generation of Connectivity
09/11/2024 | SEMIThe SEMI MEMS & Imaging Sensors Summit, themed Sensor Revolution for a Connected Future, is set to bring together some of the world’s leading minds in sensor technology on November 14 at the International Conference Center Munich (ICM), Germany.
Teledyne FLIR Delivering Airborne Surveillance Systems to Japan Maritime Self-Defense Force Worth Up to $21 Million
09/09/2024 | BUSINESS WIRETeledyne FLIR Defense, part of Teledyne Technologies Incorporated, has announced that it is delivering its Star SAFIRE® 380-HLD multi-spectral imaging systems to the Japan Maritime Self-Defense Force (JMSDF) as part of an agreement worth up to $20.8 million.