Bioinspired Technology
January 26, 2016 | UC Santa BarbaraEstimated reading time: 3 minutes
The next great technological advance in smartphone screens and solar cells could come from an unexpected source — giant clams. New research from UC Santa Barbara shows some species of these large bivalves produce their white coloration via color-mixing techniques akin to those used in reflective displays.
Appearing in the journal Optica, the study focuses on two species of giant clam and the symbiotic photosynthetic algae with which they cohabitate. Iridescent cells on the inside edge of the clams’ shells where the algae live produce a dazzling array of colors, including blues, greens, golds and — more rarely — white, which the animals mix in different ways.
Both clam species create white by mixing clusters of colors in much the same way that the electronic displays found in televisions, smartphones and electronic billboards combine red, blue and green pixels to make white. However, most of today’s displays generate light using LEDs or another light source, while the clams require only sunlight. Their iridescent cells contain tiny multilayer structures of proteins that act as mirrors, reflecting various wavelengths of light to produce colors.
“If we could create and control structures similar to those that generate color in the clams, it might be possible to build color-reflective displays that work with ambient light sources such as sunlight or normal indoor lighting,” said lead author Amitabh Ghoshal, a postdoctoral fellow at UCSB’s Institute for Collaborative Biotechnologies (ICB). “Producing color the way giant clams do could lead to smartphone, tablet and TV screens that use less power and are easier on the eyes.”
Ghoshal worked with Daniel Morse, a professor emeritus in the campus’s Department of Molecular, Cellular, and Developmental Biology and director of this research, and UCSB alumna Elizabeth Eck, now a graduate student at UC Berkeley.
Page 1 of 2
Suggested Items
Stocks Tumble as Nvidia Warns of Major Hit From U.S.-China Export Curbs
04/17/2025 | I-Connect007 Editorial TeamU.S. stocks slid sharply Wednesday after Nvidia warned that new U.S. export restrictions on chips to China could slash billions from its revenue, deepening investor anxiety over the broader economic fallout of President Donald Trump’s ongoing trade war.
Samsung and Google Cloud Expand Partnership
04/09/2025 | PRNewswireSamsung Electronics Co., Ltd and Google Cloud today announced an expanded partnership to bring Google Cloud's generative AI technology to Ballie, a new home AI companion robot from Samsung.
Insulectro Technology Village to Feature 35 Powerchats at IPC APEX EXPO 2025
03/11/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, will present its popular and successful 13.5-minute PowerChats™ during this year’s IPC APEX EXPO at the Anaheim Convention Center, March 18-20, 2025.
Drip by Drip: Semiconductor Water Management Innovations
03/05/2025 | IDTechExNot only does semiconductor manufacturing require large volumes of energy, chemicals, and silicon wafers, it also requires vast volumes of water. IDTechEx’s latest report, “Sustainable Electronics and Semiconductor Manufacturing 2025-2035: Players, Markets, Forecasts”, forecasts water usage across semiconductor manufacturing to double by 2035, as demand for integrated circuits continues to rise.
Pusan National University Develops One-Step 3D Microelectrode Technology for Neural Interfaces
02/28/2025 | PRNewswireNeural interfaces are crucial in restoring and enhancing impaired neural functions, but current technologies struggle to achieve close contact with soft and curved neural tissues. Researchers at Pusan National University have introduced an innovative method—microelectrothermoforming (μETF)—to create flexible neural interfaces with microscopic three-dimensional (3D) structures.