Bioinspired Technology
January 26, 2016 | UC Santa BarbaraEstimated reading time: 3 minutes
“As far as we know, there is no reason or advantage to having different colored separate cells compared to individual cells with multiple colors in them,” Ghoshal said. “It is possible that one species has the genetic tools for one configuration and the other species has the tools to make the other configuration, but we don’t know that yet.”
The scientists studied the clams using a combination of microscopy and spectroscopy in order to precisely measure the color and amount of reflected light coming from individual cells. With this information, they could figure out whether a region that appeared bright white resulted from a few highly reflective cells or a great number of less reflective cells. To accomplish spectroscopic analysis at cellular and subcellular scales, they used a high-resolution microspectrophotometer constructed for their previous study of reflective structures in squid skin cells.
“It is difficult to acquire individual spectra from a small cell that shows multiple reflective colors,” Ghoshal said. “It took a lot of patience and trying different approaches.”
In addition, the team is investigating how the iridescent cells of giant clams interact with their algal partners to enhance photosynthesis. “Like solar cells, photosynthesis involves converting light into energy,” Ghoshal explained. “As we expand our understanding of the clams’ system for light collection, we can take lessons from it to create solar cells that more efficiently convert light to energy.”
Ghoshal and Morse are now collaborating with UCSB chemistry and materials professor Guillermo Bazan to design and test solar cells with structures similar to those found in the clams. They seek to determine whether it is possible to increase the efficiency of synthetic solar cells.
“If we could use what we learned from the clams to build a very efficient, distributed light-gathering system, then we could use that to make more efficient three-dimensional solar cells that require less area than our present rooftop and land-based solar farms,” Ghoshal said.
Page 2 of 2Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Samsung Cuts 2nm Wafer Prices to Undercut TSMC
09/30/2025 | I-Connect007 Editorial TeamSamsung Electronics has lowered the price of its 2-nanometer wafers to approximately $20,000, undercutting rival Taiwan Semiconductor Manufacturing Co. (TSMC) by about one-third, Digitimes reported on September 29.
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.