Quantum Technology on a Chip
January 26, 2016 | Yale UniversityEstimated reading time: 2 minutes
The potential benefits of quantum technology are huge. Theoretically, it can complete in seconds certain tasks - like simulations of complex chemical processes or searching through huge amounts of data - that would require years for current technology.
Putting it into execution, though, is not so easy. For one, quantum systems, like single atoms or single photons, are extremely delicate and can be thrown off by various environmental influences – electrical, magnetic, and thermal among them. So it's important that the system be protected from the environment. At the same time, though, it needs to be controlled. That can be done now on a very small scale, but a number of factors - expense and the amount of technology required, for instance - make it very difficult to control many quantum systems at once.
In a step toward solving this, the lab of Prof. Hong Tang has devised a process of nanofabrication to create a silicon chip that contains all the components needed for a quantum information processor.
"We can make a lot of these nanodevices easily by copying our design hundreds or thousands of times, without much additional effort or cost," said Carsten Schuck, post-doctoral researcher and lead author of the paper. "It's similar to what people in the semiconductor industry do, who developed the technology to make billions of transistors."
The two essential requirements for a scalable quantum information processor are quantum interference (in which a photon – able to be in more than one place at a time – crosses its own path) and single-photon detectors. The chip that the researchers designed contains a nanophotonic waveguide, which can guide light into small spaces and to wherever is needed on the chip. It also has a directional coupler that can split a light beam into two identical beams, or conversely, combine two beams into one output. Schuck compares his system to state-of-the-art experimental setups consisting of hundreds of bulky optical components to control a quantum system.
"Where we use a tiny silicon chip you used to need a whole room full of equipment to control a quantum system," he said. "If you wanted to manipulate another quantum system, you needed another room and the money to buy all the equipment again. But if I want to manipulate another photon, I put an additional circuit on the same square-centimeter silicon chip, which takes a couple extra seconds during nanofabrication."
With this research, Schuck said the research team should eventually realize a programmable optical quantum processor that can run a quantum algorithm. The scalability of the nanofabrication routines for silicon chips will then allow them to solve problems difficult for classical computers. He added that the same technology could also be useful for other applications, such as building extremely sensitive sensors or secure communication devices.
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
MICROOLED Announces Partnership with Vortex Optics and Brand New US Headquarters
05/02/2025 | BUSINESS WIREMICROOLED Inc., the leading global supplier of AMOLED displays, is proud to announce their partnership with Vortex Optics to advance the development of high-performance weapon sights for optical sighting systems.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.