Breakthrough Enables Ultra Fast Transport of Electrical Charges in Polymers
January 29, 2016 | Umeå UniversityEstimated reading time: 2 minutes
A research team at Umeå University has showed, for the first time, that a very efficient vertical charge transport in semiconducting polymers is possible by controlled chain and crystallite orientation. These pioneering results, which enhance charge transport in polymers by more than 1,000 times, have implications for organic opto-electronic devices and were recently published in the journal Advanced Materials.
Conjugated semiconducting polymers (plastic) possess exceptional optical and electronic properties, which make them highly attractive in the production of organic opto-electronic devices, such as for instance photovoltaic solar cells (OPV), light emitting diodes (OLED) and lasers.
Polythiophene polymers, such as poly(3-hexylthiophene), P3HT, have been among the most studied semiconducting polymers due to their strong optical absorbance and ease of processing into a thin film from solution. In both OPVs and OLEDs, charges must be transported in the out of plane (vertical) direction inside the polymer film.
However, until now the vertical charge carrier mobility of organic semiconductors, i.e. the ability of charges to move inside the material, has been too low to produce fast charge transport in electronic devices. Faster charge transport can occur along the polymer chain backbone. However, a method to produce controlled chain orientation and high mobility in the vertical direction has remained elusive until now.
In the present work, a team of chemists and materials scientists, led by Professor David R. Barbero at Umeå University, has found a new method to align chains vertically and to produce efficient transport of electric charges through the chain backbone. In this new study, moreover, high charge transport and high mobility were obtained without any chemical doping, which is often used to artificially enhance charge transport in polymers.
“The transport of electric charge is greatly enhanced solely by controlled chain and crystallite orientation inside the film. The mobility measured was approximately one thousand times higher than previously reported in the same organic semiconductor,” says David Barbero.
In what way will these results affect the field of organic electronics?
“We believe these results will impact the fields of polymer solar cells and organic photodiodes, where the charges are transported vertically in the device. Organic-based devices have traditionally been slower and less efficient than inorganic ones (e.g. made of silicon), in part due to the low mobility of organic (plastic) semiconductors. Typically, plastic semiconductors, which are only semi-crystalline, have hole mobilities about 10,000 times lower than doped silicon, which is used in many electronic devices. Now we show it is possible to obtain much higher mobility, and much closer to that of silicon, by controlled vertical chain alignment, and without doping,” says David Barbero.
The charge transport was measured using nanoscopic electrical measurements, and gave a mobility averaging 3.1 cm2/V.s, which is the highest mobility ever measured in P3HT, and which comes close to a theoretical estimation of the maximum mobility in P3HT. Crystallinity and molecular packing characterisation of the polymer was performed by synchrotron X-ray diffraction at Stanford University’s National Accelerator (SLAC) and confirmed that the high mobilities measured were due to the re-orientation of the polymer chains and crystallites, leading to fast charge transport along the polymer backbones.
These results, published in Advanced Materials, may open up the route to produce more efficient organic electronic devices with vertical charge transport (e.g. OPV, OLED, lasers etc.), by a simple and inexpensive method, and without requiring chemical modification of the polymer.
Suggested Items
Delta Electronics Thailand Ranked Among Asia’s Top Corporates at the Alpha Southeast Asia 15th Institutional Investor Awards
07/14/2025 | Delta ElectronicsDelta Electronics (Thailand) Public Company Limited, a global leader in power management and smart green solutions, has been recognized by global investors for its excellence in investor relations and corporate governance, earning top ranking in the “Most Improved Investor Relations” at the Alpha Southeast Asia 15th Annual Institutional Investor Awards for Corporates, held on June 30, 2025, in Singapore.
Kimball Electronics' Pride Month Celebrations
07/14/2025 | Kimball ElectronicsAt Kimball Electronics, we believe in fostering a culture of inclusion, respect, and belonging. This June, our global teams came together to celebrate PRIDE Month with meaningful actions that reflect our commitment to the LGBTQ+ community.
NOTE Posts Interim Report for Q2 2025
07/14/2025 | NOTENOTE reports stable second-quarter results for 2025 with continued profitability and strong cash flow, reaffirming its growth strategy despite a challenging market environment.
Scanfil, MB Elettronica to Join Forces
07/14/2025 | ScanfilFinnish Scanfil, the largest European stock exchange listed Electronic Manufacturing Service company in terms of turnover, and Italian MB Elettronica (“MB”) from Cortona Arezzo have agreed to join forces.
PCBAA’s David Schild: Where U.S. Electronics Manufacturing Stands Today
07/14/2025 | Marcy LaRont, I-Connect007As the U.S. Congress looks toward a summer break, David Schild of PCBAA discusses the growing momentum in U.S. electronics manufacturing policy, emphasizing bipartisan support for reshoring efforts, the importance of targeted tax incentives, and the challenges posed by global competition. He highlights PCBAA’s growth, advocacy on Capitol Hill, and the need for sustained investment to revitalize the PCB industry.