Footsteps Could Power Mobile Devices
February 8, 2016 | University of Wisconsin-MadisonEstimated reading time: 4 minutes
When you're on the go and your smartphone battery is low, in the not-so-distant future, you could charge it simply by plugging it into … your shoe.
That's right. An innovative energy harvesting and storage technology developed by University of Wisconsin-Madison mechanical engineers could reduce our reliance on the batteries in our mobile devices, ensuring we have power for our devices no matter where we are.
In a paper published November 16, 2015, in the journal Scientific Reports, Tom Krupenkin, an associate professor of mechanical engineering at UW-Madison, and J. Ashley Taylor, a senior scientist in mechanical engineering, described a new energy-harvesting technology that's particularly well-suited for capturing the energy of human motion to power mobile electronic devices.
The technology could enable a footwear-embedded energy harvester that captures energy produced by humans during walking and stores it for later use.
Power-generating shoes could be especially useful for the military, as soldiers currently carry heavy batteries to power their radios, GPS units and night-vision goggles in the field. The advance could provide a source of power to people in remote areas and developing countries that lack adequate electrical power grids.
"Human walking carries a lot of energy in it," Krupenkin says. "Theoretical estimates show that it can produce up to 10 watts per shoe, and that energy is just wasted as heat. A total of 20 watts from walking is not a small thing, especially compared to the power requirements of the majority of modern mobile devices."
Krupenkin says tapping into just a small amount of that energy is enough to power a wide range of mobile devices, including smartphones, tablets, laptop computers and flashlights. For example, a typical smartphone requires less than two watts.
However, traditional approaches to energy harvesting and conversion don't work well for the relatively small displacements and large forces of footfalls, according to the researchers. "So we've been developing new methods of directly converting mechanical motion into electrical energy that are appropriate for this type of application," Krupenkin says.
The researchers' new energy-harvesting technology takes advantage of "reverse electrowetting," a phenomenon that Krupenkin and Taylor pioneered in 2011. With this microfluidic approach, as a conductive liquid interacts with a proper nanofilm-coated surface, the mechanical energy is directly converted into electrical energy.
The reverse electrowetting method can generate high power densities but it requires an energy source with a reasonably high frequency, such as a mechanical source that's vibrating or rotating quickly. "Yet our environment is full of low-frequency mechanical energy sources such as human and machine motion, and our goal is to be able to draw energy from these types of low-frequency energy sources," Krupenkin says. "So reverse electrowetting by itself didn't solve one of the problems we had in this space."
To overcome this problem of needing a high-frequency mechanical energy source, the researchers developed what they call the "bubbler" method, which they described their Scientific Reports paper.
Page 1 of 2
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
SAIC Announces CEO Transition
10/28/2025 | SAICScience Applications International Corporation, a premier Fortune 500® company driving our nation's digital transformation across the defense, space, civilian, and intelligence markets, today announced that the Company’s Board of Directors has appointed James (Jim) Reagan as Interim Chief Executive Officer, effective immediately. Mr. Reagan succeeds Toni Townes-Whitley.
Barnes Completes Separation Into Two Companies: Barnes Aerospace and The Industrial Solutions Group
10/28/2025 | BUSINESS WIREBarnes Group Inc., which was acquired by funds managed by affiliates of Apollo in January, announced that it has successfully separated into two companies, Barnes Aerospace and The Industrial Solutions Group, each with its own leadership team and capital structure.
Saab, the Swedish Armed Forces Extend Gripen Maintenance Contract
10/13/2025 | SaabSaab and the Swedish Armed Forces have extended an existing contract and Saab has received an order for support- and maintenance services for Gripen C/D and E. The order value is approximately SEK 4 billion and deliveries will take place 2026 to 2027.
RTX Unveils new APG-82(V)X Radar Enhanced with Gallium Nitride
09/25/2025 | RTXRaytheon, an RTX business, has unveiled the latest iteration of its combat-proven APG-82 radar, the APG-82(V)X. The new radar variant incorporates cutting-edge gallium nitride (GaN) technology to enhance the radar's effectiveness, delivering increased range, advanced air-to-air, air-to-ground and electronic warfare capabilities.
U.S. Army Awards $13M IDIQ Contract to Element U.S. Space & Defense
09/11/2025 | BUSINESS WIREElement U.S. Space & Defense, a trusted leader in advanced testing and engineering services, has been awarded a multi-year indefinite-delivery/indefinite-quantity (IDIQ) contract valued at $13,021,816 from United States Army Contracting Command - Aberdeen Proving Ground (ACC-APG).