A Quantum Leap for the Next Generation of Superconductors
February 26, 2016 | CORDISEstimated reading time: 2 minutes
EU-funded scientists have shown how superconductors can work at higher temperatures, opening the door to numerous new industrial applications.
Quantum materials – materials designed at the sub-atomic level – can be finely-tuned to achieve extremely useful properties that are often not found in nature. These include superconductivity, the ability to conduct electricity without resistance below a certain temperature.
An ambitious six-year EU-funded project, Q-MAC (Frontiers in Quantum Materials Control) was only launched in 2013, but has already achieved a number of potentially significant breakthroughs in this field. These findings could significantly advance European understanding of superconductivity and help to pioneer new industrial applications ranging from supercomputers to hover trains.
Superconductors at higher temperatures
For example, the team has shown that shining lasers at superconductors can make them work at higher temperatures. This is significant because superconductors currently only work at very low temperatures, which requires expensive liquid nitrogen or helium.
Superconductors are used in numerous high tech instruments such as medical scanners, super-fast electronic computer circuits and trains that use superconducting magnets to hover above the tracks, thus eliminating friction. The development of superconductors that work at higher temperatures – or even at room temperature – could help to cut costs by eliminating the need for cooling and lead to new applications.
Having focused on material made from potassium atoms and carbon atoms arranged in ball-like structures, the Q-MAC project team will now try to find other superconductors that can be coerced to work at even higher temperatures. The researchers are also looking to engineer new meta-materials – materials that are not found in nature – that offer optimised superconductivity.
High-temperature superconductors for practical applications
Another key objective is to ensure the stability of high-temperature superconductors that can be exploited for practical applications. This is not straight forward; high-temperature superconductivity is a delicate property that is difficult to maintain for prolonged periods of time.
The challenge therefore is to prevent heat or other environmental factors from disturbing the system. In order to address this, the project team is currently looking into the possibility of ‘sandwiching’ the superconducting system between protective layers of specially engineered materials, which would ‘screen out’ disturbances. Novel experimental techniques, combined with advanced computer simulations, will be carried out.
The Q-MAC project team has also discovered that extremely short X-ray pulses can be used to achieve vibrations in crystals, trigger a change in the magnetic properties of an atomically-thin layer that lies on its surface. This anatomically-thin oxide film has properties very different from its bulk form.
This makes complex oxide structures a versatile tool for engineering materials and devices properties. Such ultrafast light control meta-materials could lead to new prospects in magnetic storage technologies.
In addition to the practical side of things, the Q-MAC project is also focusing on developing an accurate theoretical understanding of the behaviour of atoms and electrons in quantum materials. The Q-MAC project is scheduled to run until September 2019.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.