New Technique for Advanced Printed Electronics
March 23, 2016 | AISTEstimated reading time: 5 minutes
Figure 2: (a) Schematic of synchrotron X-ray diffraction experiment and diffraction pattern of plate-like crystal, (b) Molecular packing structure within crystals, (c) Schematic of molecular chain and polarization alignment on substrate surface.
A capacitor-type device using the plate-like crystals with about 1 μm thickness exhibited quasi-rectangular loops in the electric polarization (P) versus electric field (E) hysteresis experiments without additional thermal annealing (Fig. 3a). The devices exhibited polarization switching at a very low voltage of about 3–4 V at 10 Hz. The fatigue characteristics of switching were evaluated at frequencies of 10, 100, and 1000 Hz. The ferroelectric properties could be maintained until hundreds of thousands cycles at 1000 Hz (Fig. 3b). The researchers expected that the fatigue characteristics could be improved by optimizing the device structure.
Figure 3: Ferroelectric properties of the developed single-crystalline thin film
(a) Electric polarization (P) versus electric field (E) hysteresis loops. (b) Fatigue characteristics at frequencies of 10, 100, and 1000 Hz
Piezoresponse force microscope (PFM) characterization provides microscopic information about the polarization reversal. Figure 4a shows various sizes of polarization reversal domains obtained by applying a constant DC bias of +20 V to the tip with a pulse duration varying from 10 to 1000 ms for a 1.0 µm thick film. The minimum domain size was ≈500 nm, whereas it increases logarithmically with increasing a pulse duration (Fig. 4b). This domain was found to be stable for at least 40 h under ambient pressure at room temperature. Phases of PFM images reveal that the polarization changes by not 90 degrees but 180 degrees (Fig. 4c).
Figure 4: Local polarization reversal by using a piezoresponse force microscope (PFM)
(a) PFM phase image of written domains. (b) Size variation of polarization reversal domains as a function of pulse duration for an applied electric field. (c) Phase images of vertical and lateral directions
Future Plans
The researchers aim to develop manufacturing technologies of all-printed electronics devices by combining the developed printing technique for thin film formation and other printing techniques for fabricating metal wires and semiconductor thin films.
Page 3 of 3Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
SEMI Foundation Honors Applied Materials at SEMICON West with 2025 Excellence in Achievement Award for Talent Development
11/04/2025 | SEMIThe SEMI Foundation announced it recognized Applied Materials, Inc. with the Excellence in Achievement Award at SEMICON West 2025 in Phoenix, Arizona, honoring the company’s outstanding leadership and collaboration in building the next generation of semiconductor talent.
On the Line With… Ultra HDI, Episode 8: “Materials, Up and Coming Capabilities,” Now Available
11/05/2025 | I-Connect007I-Connect007 is excited to announce the release of the eighth episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Materials, Up and Coming Capabilities,” host Nolan Johnson sits down with resident expert John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to discuss how material selection influences the Ultra HDI (UHDI) manufacturing process.
New Podcast Episode: “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics”
11/05/2025 | I-Connect007I-Connect007 has released of a new episode in its Voices of the Industry podcast series, titled “Bonding Innovation: How Adhesives and Coatings Are Powering the Next Generation of Electronics.” Hosted by Nolan Johnson, this insightful discussion dives deep into the evolving world of adhesives and coatings—materials that are redefining performance, reliability, and design in modern electronics manufacturing. Dymax's Doug Katze, a leading expert in adhesive technologies, delivers what can only be described as a master class on how these critical materials are adapting to meet rapidly changing market demands.
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.