-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Superconductivity Seen in a New Light
March 31, 2016 | Université de GenèveEstimated reading time: 2 minutes

Superconducting materials have the characteristic of letting an electric current flow without resistance. The study of superconductors with a high critical temperature discovered in the 1980s remains a very attractive research subject for physicists. Indeed, many experimental observations still lack an adequate theoretical description. Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have managed to lift the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, show that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones as was postulated for the past thirty years. A small revolution in the world of superconductivity.
A superconducting material is a material that, below a certain temperature, loses all electrical resistance (equal to zero). When immersed in a magnetic field, high-temperature superconductors (high-Tc) allow this field to penetrate in the form of filamentary regions, called vortices, in which the material is no longer superconducting. Each vortex is a whirl of electronic currents generating their own magnetic field and in which the electronic structure is different from the rest of the material.
Coexistence rather than competition
Some theoretical models describe high-Tc superconductors as a competition between two fundamental states, each developing its own spectral signature. The first is characterized by an ordered spatial arrangement of electrons. The second, corresponding to the superconducting phase, is characterized by electrons assembled in pairs.
«However, by measuring the density of electronic states with local tunneling spectroscopy, we discovered that the spectra that were attributed solely to the core of a vortex, where the material is not in the superconducting state, are also present elsewhere, that is to say in areas where the superconducting state exists. This implies that these spectroscopic signatures do not originate in the vortex cores and cannot be in competition with the superconducting state», explains Christoph Renner, professor in the Department of Quantum Matter Physics of the Faculty of Science at UNIGE. «This study therefore questions the view that these two states are in competition, as largely assumed until now. Instead, they turn out to be two coexisting states that together contribute to the measured spectra», professor Renner says. Indeed, physicists from UNIGE have shown, using theoretical simulation tools, that the experimental spectra can be reproduced perfectly by considering the superposition of the spectroscopic signature of a superconductor and this other electronic signature, brought to light through this new research.
This discovery is a breakthrough towards understanding the nature of the high temperature superconducting state. It puts some theoretical models based on the competition of the two states mentioned above in difficulty. It also sheds new light on the electronic nature of the vortex cores, which potentially has an impact on their dynamics. Mastery of this dynamics, and particularly of the anchoring of vortices that depend on their electronic nature, is critical for many applications, such as high field electromagnets.
Suggested Items
ZETWERK Enhances Manufacturing Capabilities with TRI
06/04/2025 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, is pleased to announce that ZETWERK Electronics has integrated TRI's Automated Optical Inspection (AOI) and Solder Paste Inspection (SPI) solutions into its state-of-the-art manufacturing facility in Tamil Nadu.
Rehm Thermal Systems Mexico: Ten Years of Growth and Innovation in an Emerging Market
06/03/2025 | Rehm Thermal SystemsOver ten years ago, Luis A. Garcia began his success story at Rehm Thermal Systems. On May 15, 2013, he initially joined as a member of the Rehm USA team.
IPC Releases Standards and Revisions Updates for Q2 2025
06/04/2025 | IPCEach quarter, IPC releases a list of standards that are new or have been updated. To view a complete list of newly published standards and standards revisions, translations, proposed standards for ballot, final drafts for industry review, working drafts, and project approvals, visit ipc.org/status. These are the latest releases for Q1 2025.
Panasonic Appoints Matrix as its Authorized Distributor in Europe
06/03/2025 | Matrix ElectronicsEffective July 1st, 2025, Panasonic Industry Co., Ltd. has appointed Matrix Electronics Limited as its Authorized Distributor in the European region.
Datest Receives Its 16th AS9100D Recertification Audit
06/03/2025 | DatestDatest, a trusted leader in advanced testing, engineering, inspection, and failure analysis services, proudly announces sixteen straight years of aerospace-grade perfection. Cue the confetti cannons (ESD-safe, of course).