Innovative Exeter Research Pioneers Nanotechnology for Gas Sensing
April 13, 2016 | University of ExeterEstimated reading time: 3 minutes
A team of scientists from the University of Exeter have created a new type of device that could be used to develop cost-effective gas sensors.
The pioneering team, which includes two second year Exeter undergraduates, have created a new type of device that emits light in the infrared part of the spectrum. Many important gases strongly absorb infrared light and this characteristic absorption can be used as a way of sensing them.
However, most existing infrared gas sensors use conventional "light-bulb" incandescent sources of infrared light, which have a number of considerable shortcomings including limited lifetimes due to the fragility of the filament. The new sensors could be used for a diverse range of applications including the sensing of atmospheric pollutants such as nitrogen dioxide, which is emitted from car exhausts and which can have a significant effect on public health.
The Exeter team used a sandwich of different 2D materials, which are only a few atoms thick, to create a device that is similar to a nanoscale light-bulb, but where the filament is extremely hard to break. In addition, the team believe that these devices could ultimately be more cost effective and sustainable to manufacture than semiconductor based light emitting diodes emitting at these long wavelengths.
The research, which is led by Professor Geoff Nash, is published in the highly-respected scientific journal Applied Physics Letters.
The team included undergraduate students Hannah Barnard and Katya Zossimova, who began working as part of Professor Nash's group last summer whilst in their first year.
Professor Nash, Professor of Engineering Physics and Director of Natural Sciences, from the University of Exeter, said: "Previous devices we've made really only operated in vacuum and would break very quickly when exposed to air. By encapsulating the nanoscale filament in a protective coating, we have shown that these devices can operate in air for well over 1000 hours, paving the way for the development of practical infrared sources that could be used in sensor applications."
Commenting on the makeup of his research team, he went on to add that "It's a privilege to work alongside our some of our fantastic students, who have brought energy, enthusiasm and a different perspective to our research. Hannah and Katya, and other undergraduates before, have made a real impact to the work of my group."
Katya, who is studying Physics, said: "It's been really exciting to be part of the research team, everyone has been really welcoming and I have learned a lot from the experience. I feel that this opportunity has given me the confidence to consider postgraduate studies in Physics."
Page 1 of 2
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
Micron Announces Business Unit Reorganization to Capitalize on AI Growth Across All Market Segments
04/23/2025 | MicronMicron Technology, Inc., a leader in innovative memory and storage solutions, announced a market segment-based reorganization of its business units to capitalize on the transformative growth driven by AI, from data centers to edge devices.
Connected Commercial Drone Market to Reach $37.3 Billion Worldwide by 2029
04/04/2025 | Berg InsightBerg Insight, a leading IoT market research provider, today released a new report covering connected commercial drones used for industrial and governmental purposes.
Boulder Scientific Company Completes Investments to serve Polyolefins, Electronics, Aerospace and Defense Sectors
03/14/2025 | PRNewswireBoulder Scientific Company (BSC) announces completion of several investments at its Mead and Longmont, Colorado manufacturing facilities to support customers in the polyolefins, electronics, aerospace and defense sectors.
Transition Automation to Showcase Expanding Line of Permalex Squeegee Products at IPC APEX EXPO
03/07/2025 | Transition AutomationTransition Automation, Inc. (TA) is exhibiting a full product range of Permalex Edge Metal Squeegees and Holder systems at this year’s IPC APEX EXPO