Fast, Stretchy Circuits Could Yield New Wave of Wearable Electronics
May 30, 2016 | University of Wisconsin-MadisonEstimated reading time: 2 minutes
The consumer marketplace is flooded with a lively assortment of smart wearable electronics that do everything from monitor vital signs, fitness or sun exposure to play music, charge other electronics or even purify the air around you — all wirelessly.
Now, a team of University of Wisconsin—Madison engineers has created the world’s fastest stretchable, wearable integrated circuits, an advance that could drive the Internet of Things and a much more connected, high-speed wireless world.
The advance is a platform for manufacturers seeking to expand the capabilities and applications of wearable electronics — including those with biomedical applications — particularly as they strive to develop devices that take advantage of a new generation of wireless broadband technologies referred to as 5G.With wavelength sizes between a millimeter and a meter, microwave radio frequencies are electromagnetic waves that use frequencies in the .3 gigahertz to 300 gigahertz range. That falls directly in the 5G range.
In mobile communications, the wide microwave radio frequencies of 5G networks will accommodate a growing number of cellphone users and notable increases in data speeds and coverage areas.
In an intensive care unit, epidermal electronic systems (electronics that adhere to the skin like temporary tattoos) could allow health care staff to monitor patients remotely and wirelessly, increasing patient comfort by decreasing the customary tangle of cables and wires.
What makes the new, stretchable integrated circuits so powerful is their unique structure, inspired by twisted-pair telephone cables. They contain, essentially, two ultra-tiny intertwining power transmission lines in repeating S-curves.
This serpentine shape — formed in two layers with segmented metal blocks, like a 3-D puzzle — gives the transmission lines the ability to stretch without affecting their performance. It also helps shield the lines from outside interference and, at the same time, confine the electromagnetic waves flowing through them, almost completely eliminating current loss. Currently, the researchers’ stretchable integrated circuits can operate at radio frequency levels up to 40 gigahertz.
And, unlike other stretchable transmission lines, whose widths can approach 640 micrometers (or .64 millimeters), the researchers’ new stretchable integrated circuits are just 25 micrometers (or .025 millimeters) thick. That’s tiny enough to be highly effective in epidermal electronic systems, among many other applications.
Ma’s group has been developing what are known as transistor active devices for the past decade. This latest advance marries the researchers’ expertise in both high-frequency and flexible electronics.
“We’ve found a way to integrate high-frequency active transistors into a useful circuit that can be wireless,” says Ma, whose work was supported by the Air Force Office of Scientific Research. “This is a platform. This opens the door to lots of new capabilities.”
Other authors on the paper include Yei Hwan Jung, Juhwan Lee, Namki Cho, Sang June Cho, Huilong Zhang, Subin Lee, Tong June Kim and Shaoqin Gong of UW–Madison and Yijie Qiu of the University of Electronic Science and Technology of China.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
Waldom Electronics Announces 2024 ESG Award Winners
10/24/2025 | BUSINESS WIREWaldom Electronics is proud to announce the winners of its 2024 ESG Awards, presented during the annual Waldom Dinner held ahead of the ECIA Executive Conference earlier this week.
Universal Display Corporation Announces Recipient of Inaugural Sherwin I. Seligsohn Innovation Award in Organic Electronics
10/24/2025 | BUSINESS WIREUniversal Display Corporation (UDC), enabling energy-efficient displays and lighting with its UniversalPHOLED® technology and materials, announced the recipient of the inaugural Sherwin I. Seligsohn Innovation Award.
Taiwan Excellence Makes Its SEMA Debut
10/24/2025 | PRNewswireAs the global automotive industry accelerates toward electrification and intelligence, Taiwan Excellence makes its debut at the world's largest aftermarket stage, SEMA Show 2025, spotlighting next-generation automotive innovations in Edge AI, ADAS, and Sensor Fusion.
Aegis Software Expands its Presence in France and Partners with STPGroup
10/24/2025 | Aegis SoftwareAegis Software a global provider of manufacturing execution and operations software for diverse manufacturing industries, announced that it has signed a partnership with STPGroup to expand its support of the French electronics market. STPGroup, specializes in the distribution, manufacture and integration of industrial production equipment, and will become a representative of Aegis’ FactoryLogix MES Platform in France.
Dow Reports Q3 2025 Results
10/24/2025 | DowDow reported third-quarter 2025 net sales of $10.0 billion, down 8% year-over-year, as the company continued to advance cost reduction initiatives and operational improvements amid challenging market conditions.