-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Learning Theory/Learning Curves
June 1, 2016 | Happy HoldenEstimated reading time: 14 minutes
F =C2/C1 (1)
Where C1 is the initial average unit cost and C2 is the average unit cost for double the reference quantity.
From equation (1) it is evident that the higher the value of F, the less change in cost is to be expected due either to process maturity (automation, optimized setup, tooling, yields), or highly customized content, as might be expected from small lot quantities of complex rigid flex assemblies.
For an initial quantity Qo and a final quantity Q the number of “doublings” or fractions thereof for the total quantity produced is given by log(Q/Qo)/log(2). Therefore, the unit cost behavior as a function of quantity can be written as:
C = C1*(F/100) ^ (log(Q/Qo) / log(2)) (2a)
Where C is the unit cost after quantity Q units or lots, C1 is the first unit cost, and F is the experience factor in percent.
A value of 75 for F would be typical of very steep (fast) learning curves, in which process consolidation proceeds rapidly with corresponding reductions in changeover time, improvements in yields, etc. Equation (2a) is awkward to handle since the principal variable, Q, appears in the exponent. It can be rearranged (and simplified) by noting that in general a ^ log(b) is equivalent to b ^ log(a) since either expression can be written as e ^ [log(a)*log(b)]. An alternate and better form for equation (2a) is therefore:
C = C1*q ^ k (2b)
Where q = Q/Qo and k = log(F/100) / log(2)
The total cost, T, to produce a quantity Q units or lots can be obtained by integrating equation (2b) over the limits q = 0 to q = Q:
T = C1* q ^ kdq = C1*Q ^ (k+ 1)/(k+ 1) (3)
The average cost, a, per unit or lot quantity is the total cost divided by the quantity:
A = T/Q (4)
For processes where the experience factor is accurately known, the average cost is often used to quote a lot or piece price to be effective over the entire production. Suppose, for example, that a first lot of ten pieces is produced at a cost of $20.00 by a process with a known experience factor of 80%. What would be the predicted piece cost for 1,000 units? For F = 80%, k is found to be log (0.80)/log (2) = 20.3219, and for this case the “experience” quantity Q = 1,000/10 = 100.
Therefore:
C = 20.00*100 ^ (-0.3219) = 4.5412
So that at the end of the run the production cost has declined to $4.54 per lot. The total cost, from equation (3), becomes:
T = 20*100 ^ (0.6781)/0.6781 = 669.7274
The average production cost per unit quantity (1 lot) is therefore T/Q = $6.70 and the piece cost is about $0.67. This approach can be used to create log-log plots for various experience factors, giving unit costs as a function of quantities and initial costs. For example, a process with 80% experience factor and an initial cost of 1.00 per unit can expect unit costs to decline to about 0.11 by the time 1,024 (2 ^ 10) units have been produced. This not atypical of the semiconductor industry, where F may be 75% or even less. At the other end of the scale a complex, low volume product may be 90% or higher. One-offs with highly customized assemblies will be as high as 100%: the product lifetime is too short (one-off) and the standardized process component(s) are too limited to offer meaningful improvement opportunities.
New Technologies—the Experience Factor[1]
To use this analysis for new technologies it is necessary to determine the experience factor. This can done using a broader experience base than the simple doubling shown in equation (1) by flipping equation (2a) around [. . .] [LL1] provided the data are available, specifically:
F = 10 ^ (log(2)*log(C/C1) /log(Q)) (5)
If the production cost of a metal-core type insulated metal substrate LED multichip board was 2.00 when 10,000 pieces had been produced (C1) and the cost (C) is now 0.65 when 4,000,000 have been produced (Q = 400), what is the experience factor F?
F = 10 ^ (log(2)*log(0.65/2.00)/log(400))
Or: F = 0.878
What will be the cost for the 20,000,000th piece when Q will be effectively 2,000 (20,000,000/10,000)?
k = log(0:878)/log(2) = 20:18771
C = 2.00*2000 ^ (20.18771) = 0.4801
This example assumes a limited degree of process innovation is necessary in the introduction of a new layout for the same function/substrate. As is often the case in printed circuit manufacturing, where the emphasis is less on products and more on capabilities built on standardized processes, the experience factor may be even higher than 88%. It is important to remember that the experience factor “F” does not imply any particular degree of expertise or mastery of the technology. It is simply an index of the expected stability of processing costs over the lifetime of the design.
References
- Burr, W., Pearne, N., “Learning curve theory and innovation,” Circuit World, Vol. 39, Issue 4, 2003, pp 169–173.
- Transformative Learning (Jack Mezirow)
- www.wikipedia.org
- The Quintessential of Generative Learning Theory
- The Learning Curve or Experience Curve, provided by James Martin.
Happy Holden has worked in printed circuit technology since 1970 with Hewlett-Packard, NanYa/Westwood, Merix, Foxconn and Gentex. Currently, he is the co-editor, with Clyde Coombs, of the Printed Circuit Handbook, 7th Ed. To contact Holden, click here.
Page 2 of 2Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
The Chemical Connection: Experience and Wisdom Gained by Doing Business
09/03/2025 | Don Ball -- Column: The Chemical ConnectionA well-managed company learns to adjust its strategies and processes based on what it learns during challenging times. The experience gained from making (or losing) a difficult sale is invaluable in adapting new sales and manufacturing processes necessary to make that sale the next time, no matter how painful those new processes might be.
MacDermid Alpha Awarded for Innovation: Driving Process Optimization and Efficiency with Major Indian EMS Provider
08/28/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronics Solutions, a leading global supplier of integrated materials for the electronics industry, is recognized by one of India’s top EMS providers, Syrma SGS, with an award for innovation that advanced process optimization, enhanced operational efficiency, and yield gains.
Partnerships Drive Innovation for a Brighter Manufacturing Future
08/26/2025 | Barry Matties, I-Connect007When Schweitzer Engineering Laboratories (SEL) opened its greenfield facility in 2023, it did so with careful attention to choosing its suppliers. In this discussion, Collin Peters, electronics business director for North America at MKS’ Atotech, and Justin Kennedy, manager of engineering at SEL, explore their unique partnership that includes collaborative efforts to develop innovative solutions like the Uniplate® PLBCu6 line.
The Art and Science of PCB Floor Planning: A Comprehensive Guide
08/14/2025 | Cory Grunwald and Jeff Reinhold, Monsoon SolutionsPCB design is an intricate and crucial part of developing electronic products. One of the foundational stages of PCB design is floor planning, a phase where the placement of components and the flow of signals are meticulously mapped out. A good floor plan ensures that the PCB performs well, is easy to manufacture, and meets all mechanical and electrical requirements. We’ll explore the essential aspects of floor planning, from its objectives and process to the challenges that designers face.
Advint and SanRex Expand High-Performance DC Rectifier Access for North American PCB Fabricators
08/12/2025 | Advint IncorporatedAdvint Incorporated has entered a strategic partnership with SanRex Corporation, enhancing access to industrial-grade DC rectifiers for the US printed circuit board industry. With a legacy of power innovation and performance across the globe, SanRex rectifiers are available through Advint’s proficient distribution network.