-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Happy’s Essential Skills: Learning Theory/Learning Curves
June 1, 2016 | Happy HoldenEstimated reading time: 14 minutes
F =C2/C1 (1)
Where C1 is the initial average unit cost and C2 is the average unit cost for double the reference quantity.
From equation (1) it is evident that the higher the value of F, the less change in cost is to be expected due either to process maturity (automation, optimized setup, tooling, yields), or highly customized content, as might be expected from small lot quantities of complex rigid flex assemblies.
For an initial quantity Qo and a final quantity Q the number of “doublings” or fractions thereof for the total quantity produced is given by log(Q/Qo)/log(2). Therefore, the unit cost behavior as a function of quantity can be written as:
C = C1*(F/100) ^ (log(Q/Qo) / log(2)) (2a)
Where C is the unit cost after quantity Q units or lots, C1 is the first unit cost, and F is the experience factor in percent.
A value of 75 for F would be typical of very steep (fast) learning curves, in which process consolidation proceeds rapidly with corresponding reductions in changeover time, improvements in yields, etc. Equation (2a) is awkward to handle since the principal variable, Q, appears in the exponent. It can be rearranged (and simplified) by noting that in general a ^ log(b) is equivalent to b ^ log(a) since either expression can be written as e ^ [log(a)*log(b)]. An alternate and better form for equation (2a) is therefore:
C = C1*q ^ k (2b)
Where q = Q/Qo and k = log(F/100) / log(2)
The total cost, T, to produce a quantity Q units or lots can be obtained by integrating equation (2b) over the limits q = 0 to q = Q:
T = C1* q ^ kdq = C1*Q ^ (k+ 1)/(k+ 1) (3)
The average cost, a, per unit or lot quantity is the total cost divided by the quantity:
A = T/Q (4)
For processes where the experience factor is accurately known, the average cost is often used to quote a lot or piece price to be effective over the entire production. Suppose, for example, that a first lot of ten pieces is produced at a cost of $20.00 by a process with a known experience factor of 80%. What would be the predicted piece cost for 1,000 units? For F = 80%, k is found to be log (0.80)/log (2) = 20.3219, and for this case the “experience” quantity Q = 1,000/10 = 100.
Therefore:
C = 20.00*100 ^ (-0.3219) = 4.5412
So that at the end of the run the production cost has declined to $4.54 per lot. The total cost, from equation (3), becomes:
T = 20*100 ^ (0.6781)/0.6781 = 669.7274
The average production cost per unit quantity (1 lot) is therefore T/Q = $6.70 and the piece cost is about $0.67. This approach can be used to create log-log plots for various experience factors, giving unit costs as a function of quantities and initial costs. For example, a process with 80% experience factor and an initial cost of 1.00 per unit can expect unit costs to decline to about 0.11 by the time 1,024 (2 ^ 10) units have been produced. This not atypical of the semiconductor industry, where F may be 75% or even less. At the other end of the scale a complex, low volume product may be 90% or higher. One-offs with highly customized assemblies will be as high as 100%: the product lifetime is too short (one-off) and the standardized process component(s) are too limited to offer meaningful improvement opportunities.
New Technologies—the Experience Factor[1]
To use this analysis for new technologies it is necessary to determine the experience factor. This can done using a broader experience base than the simple doubling shown in equation (1) by flipping equation (2a) around [. . .] [LL1] provided the data are available, specifically:
F = 10 ^ (log(2)*log(C/C1) /log(Q)) (5)
If the production cost of a metal-core type insulated metal substrate LED multichip board was 2.00 when 10,000 pieces had been produced (C1) and the cost (C) is now 0.65 when 4,000,000 have been produced (Q = 400), what is the experience factor F?
F = 10 ^ (log(2)*log(0.65/2.00)/log(400))
Or: F = 0.878
What will be the cost for the 20,000,000th piece when Q will be effectively 2,000 (20,000,000/10,000)?
k = log(0:878)/log(2) = 20:18771
C = 2.00*2000 ^ (20.18771) = 0.4801
This example assumes a limited degree of process innovation is necessary in the introduction of a new layout for the same function/substrate. As is often the case in printed circuit manufacturing, where the emphasis is less on products and more on capabilities built on standardized processes, the experience factor may be even higher than 88%. It is important to remember that the experience factor “F” does not imply any particular degree of expertise or mastery of the technology. It is simply an index of the expected stability of processing costs over the lifetime of the design.
References
- Burr, W., Pearne, N., “Learning curve theory and innovation,” Circuit World, Vol. 39, Issue 4, 2003, pp 169–173.
- Transformative Learning (Jack Mezirow)
- www.wikipedia.org
- The Quintessential of Generative Learning Theory
- The Learning Curve or Experience Curve, provided by James Martin.
Happy Holden has worked in printed circuit technology since 1970 with Hewlett-Packard, NanYa/Westwood, Merix, Foxconn and Gentex. Currently, he is the co-editor, with Clyde Coombs, of the Printed Circuit Handbook, 7th Ed. To contact Holden, click here.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
The Marketing Minute: Marketing With Layers
10/15/2025 | Brittany Martin -- Column: The Marketing MinuteMarketing to a technical audience is like crafting a multilayer board: Each layer serves a purpose, from the surface story to the buried detail that keeps everything connected. At I-Connect007, we’ve learned that the best marketing campaigns aren’t built linearly; they’re layered. A campaign might start with a highly technical resource, such as an in-depth article, a white paper, or a podcast featuring an engineer delving into the details of a process. That’s the foundation, the substance that earns credibility.
Taking Control of PCB Verification One Step at a Time
10/09/2025 | Kirk Fabbri, Siemens EDAToday’s designs are as complex as ever, and engineers face tough decisions every day. Simulation and verification teams are confronted with a three-fold challenge: understanding the underlying theory, mastering the tools, and applying best practices.Engineers need to navigate a vast and ever-changing cast of design and simulation tools, often with overlapping functionality.
Happy’s Tech Talk #43: Engineering Statistics Training With Free Software
10/06/2025 | Happy Holden -- Column: Happy’s Tech TalkIn over 50 years as a PCB process engineer, the one skill I acquired in college that has been most beneficial is engineering statistics. Basic statistics was part of my engineering fundamentals classes, but I petitioned the dean to let me take the engineering statistics graduate course because I was creating a senior thesis for my honors focus and needed more training on Design of Experiments (DOE).
Connect the Dots: Evolution of PCB Manufacturing—Lamination
10/02/2025 | Matt Stevenson -- Column: Connect the DotsWhen I wrote The Printed Circuit Designer's Guide to...™ Designing for Reality, it was not a one-and-done effort. Technology is advancing rapidly. Designing for the reality of PCB manufacturing will continue to evolve. That’s why I encourage designers to stay on top of the tools and processes used during production, to ensure their designs capitalize on the capabilities of their manufacturing partner.
Empower Sets New Benchmark with 20x Faster Response and Breakthrough Sustainability Demonstrated at OCP Global Summit 2025
09/25/2025 | Empower SemiconductorEmpower Semiconductor, the world leader in powering AI-class processors, announced that its Crescendo chipset, an artificial intelligence (AI) and high-performance computing (HPC) processor true vertical power delivery platform, is available now for final sampling, with mass production slated for late 2025.