Flight of the RoboBee
June 8, 2016 | NSFEstimated reading time: 4 minutes
The initial project was supported by an NSF 2009 Expeditions in Computing grant, which provided $10 million over five years to the interdisciplinary, multi-investigator research teams to fund transformative computing and information technology research.
In 2012, Wood received the Alan T. Waterman Award, which recognizes one outstanding young science or engineering researcher each year.
And in 2015, Wood and his collaborators received an NSF grant to work with Intel Corporation and develop aspects of the brain-inspired computing chips their team had developed for a range of other small, autonomous systems. The award is one of a handful made as part of the InTrans program, which allows researchers to mature and deploy successful research results in industries and to transition innovations into new technologies.
Meanwhile, research on the RoboBee continues. The team is currently working to make the perching mechanism omnidirectional, enabling the robot to land anywhere, and developing onboard power sources that could allow RoboBees to fly untethered.
Wood estimates it will take another five to 10 years before the RoboBee might be ready for use in the real world.
This type of research requires a high level of sustained, long-term investment -- something at which NSF excels and which helped spur technologies like the Internet, Wi-Fi and magnetic resonance imaging (MRI).
"The RoboBees project is a great example of the value of sustained support for basic research," Wood added. "Long-term investment in high-impact research pays tremendous dividends in terms of the technology fallout. We have experienced this time and time again with this project. NSF support is essential for projects like these and in general to keep the U.S. at the forefront of technology innovation."
Page 2 of 2Suggested Items
Orbel Corporation Integrates Schmoll Direct Imaging
06/04/2025 | Schmoll AmericaOrbel Corporation in Easton, PA, proudly becomes the first PCM facility in the U.S. equipped with Schmoll’s MDI Direct Imaging system. This installation empowers Orbel to support customers with greater precision and quality.
Key Insights on Photoresist for Defect Reduction
05/21/2025 | I-Connect007 Editorial TeamIn PCB manufacturing, understanding the intricacies of the photoresist process is crucial for achieving high-quality results. Industry experts Josh Krick, a technical service engineer at IEC, and Tim Blair, a PCB imaging specialist at Tim Blair LLC, share their knowledge on the essential stages of photoresist application, highlight critical advancements in materials, and discuss common defects encountered during production. They share best practices and innovative solutions to enhance the manufacturing process, reduce defects, and ensure efficiency and reliability in high-tech applications.
NXP Unveils Third-Generation Imaging Radar Processors for Level 2+ to 4 Autonomous Driving
05/09/2025 | NXP SemiconductorNXP Semiconductors N.V. unveiled its new S32R47 imaging radar processors in 16 nm FinFET technology, building on NXP’s proven expertise in the imaging radar space.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.
Summit Interconnect Hollister Elevates PCB Prototyping with New TiTAN Direct Imaging System from Technica USA
05/01/2025 | Summit Interconnect, Inc.Summit Interconnect’s Hollister facility has recently enhanced its quick-turn PCB prototyping capabilities by installing the TiTAN PSR-H Direct Imaging (DI) system.