Quantum Systems Hold Promise for Cybersecurity and Beyond
August 11, 2016 | NSFEstimated reading time: 2 minutes

To advance the technology necessary for secure communication, the National Science Foundation (NSF) has awarded $12 million to develop systems that use photons in pre-determined quantum states as a way to encrypt data.
Directed by NSF's Office of Emerging Frontiers and Multidisciplinary Activities (EFMA), the awards signal a major investment in quantum information science, one of NSF's 10 Big Ideas for long-term discovery and innovation.
"Investments in frontier, and potentially transformative, fundamental science and engineering research, such as quantum communication, are essential to compete in the global innovation economy," said Sohi Rastegar, head of EFMA.
Researchers have long sought to encode photons -- minute particles of light -- with information that could travel through fiber optic cables across vast distances, and that would be immutably linked to a photon counterpart on the other end, a phenomenon known as quantum entanglement. A stream of encrypted data would follow behind each encoded photon.
Any attempt to intercept, tamper with or divert the data would alter the entangled photon's quantum state and become evident on arrival at its destination. If a compromised photon is detected, the quantum key needed to unlock the encryption no longer works, and the communication remains secure.
As the demand for better cybersecurity increases, NSF will support six interdisciplinary teams consisting of 26 researchers at 15 institutions to perform potentially transformative, fundamental research under the Advancing Communication Quantum Information Research in Engineering (ACQUIRE) research area in the NSF Directorate for Engineering's Emerging Frontiers in Research and Innovation (EFRI) program. Established in 2007, EFRI seeks to inspire and enable researchers to expand the limits of knowledge in the service of grand engineering challenges and national needs.
ACQUIRE researchers will confront major challenges in a four-year quest to engineer a quantum communication system on a chip. The chip will need to operate at room temperature with low energy in a fiber optic network with entangled photons.
Currently, such a communication system may be demonstrated in laboratories, but only at cryogenic -- very low -- temperatures, and with bulky, energy-intensive equipment. However, a fundamental understanding of quantum physics and optical materials, as well as recent progress in nanoscale photonic integration, have brought communication systems scaled to the quantum level within reach.
If successful, the ACQUIRE teams' results will begin to realize the hardware needed for secure and efficient quantum communication. The findings from the ACQUIRE projects will also advance quantum sensing and computing.
"A growing interest in quantum photonics and a new understanding of quantum physics and nanomaterials make this the perfect time to pursue significant engineering advances in quantum communication," said Dominique Dagenais, the NSF program director who coordinated the ACQUIRE projects.
Suggested Items
HyRel Technologies Celebrates Future Innovators: Intern Program Empowers the Next Generation of Engineers and Professionals
05/01/2025 | HyRelHyRel Technologies, a global provider of quick turn semiconductor modification solutions, is proud to spotlight its 7th class of interns in partnership with Peoria Unified School District, featuring three outstanding young women who are already making meaningful contributions to the company's innovative engineering and operations efforts.
Absolute EMS Invests in the Next Generation of Engineering Talent
05/01/2025 | Absolute EMS, Inc.Absolute EMS, Inc., a six-time award-winning provider of fast turnaround, turnkey contract electronic manufacturing services (EMS), is proud to announce the continued success of its initiative to recruit and develop young engineering talent.
Siemens Expands Global Electronics Intelligence Reach and Supplyframe Portfolio with Wevolver Acquisition
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced its intention to acquire Wevolver, expanding its audience reach, enhancing the Supplyframe product portfolio, and combining digital marketing and integrated campaign programs that include go-to-market support and content creation.
Autodesk Donates $4.3 Million to Cornell University to Prepare students for an AI-powered future
04/24/2025 | AutodeskAutodesk announced a $4.3 million gift to Cornell University’s College of Engineering and College of Architecture, Art, and Planning (AAP) to help prepare students for the future of work in an increasingly AI-driven world. The investment will fund a new Autodesk Cornell Engineering Design and Make Space in Upson Hall.
Real Time with... IPC APEX EXPO 2025: IPC Mexico Building Community and Partnerships
04/17/2025 | Real Time with...IPC APEX EXPOLorena Villanueva highlights IPC Mexico's three-year journey focused on community building and partnerships with governments and educational institutions. Key milestones include collaboration agreements with state governments and universities to enhance the electronics industry. IPC Days promotes networking and education, while a partnership with UNAM aims to integrate IPC training into engineering programs. The discussion wraps up with congratulations on IPC Mexico's achievements and the launch of the Mexico pavilion at this year's show.