Quantum Systems Hold Promise for Cybersecurity and Beyond
August 11, 2016 | NSFEstimated reading time: 2 minutes

To advance the technology necessary for secure communication, the National Science Foundation (NSF) has awarded $12 million to develop systems that use photons in pre-determined quantum states as a way to encrypt data.
Directed by NSF's Office of Emerging Frontiers and Multidisciplinary Activities (EFMA), the awards signal a major investment in quantum information science, one of NSF's 10 Big Ideas for long-term discovery and innovation.
"Investments in frontier, and potentially transformative, fundamental science and engineering research, such as quantum communication, are essential to compete in the global innovation economy," said Sohi Rastegar, head of EFMA.
Researchers have long sought to encode photons -- minute particles of light -- with information that could travel through fiber optic cables across vast distances, and that would be immutably linked to a photon counterpart on the other end, a phenomenon known as quantum entanglement. A stream of encrypted data would follow behind each encoded photon.
Any attempt to intercept, tamper with or divert the data would alter the entangled photon's quantum state and become evident on arrival at its destination. If a compromised photon is detected, the quantum key needed to unlock the encryption no longer works, and the communication remains secure.
As the demand for better cybersecurity increases, NSF will support six interdisciplinary teams consisting of 26 researchers at 15 institutions to perform potentially transformative, fundamental research under the Advancing Communication Quantum Information Research in Engineering (ACQUIRE) research area in the NSF Directorate for Engineering's Emerging Frontiers in Research and Innovation (EFRI) program. Established in 2007, EFRI seeks to inspire and enable researchers to expand the limits of knowledge in the service of grand engineering challenges and national needs.
ACQUIRE researchers will confront major challenges in a four-year quest to engineer a quantum communication system on a chip. The chip will need to operate at room temperature with low energy in a fiber optic network with entangled photons.
Currently, such a communication system may be demonstrated in laboratories, but only at cryogenic -- very low -- temperatures, and with bulky, energy-intensive equipment. However, a fundamental understanding of quantum physics and optical materials, as well as recent progress in nanoscale photonic integration, have brought communication systems scaled to the quantum level within reach.
If successful, the ACQUIRE teams' results will begin to realize the hardware needed for secure and efficient quantum communication. The findings from the ACQUIRE projects will also advance quantum sensing and computing.
"A growing interest in quantum photonics and a new understanding of quantum physics and nanomaterials make this the perfect time to pursue significant engineering advances in quantum communication," said Dominique Dagenais, the NSF program director who coordinated the ACQUIRE projects.
Suggested Items
The Pulse: Design Constraints for the Next Generation
07/17/2025 | Martyn Gaudion -- Column: The PulseIn Europe, where engineering careers were once seen as unpopular and lacking street credibility, we have been witnessing a turnaround in the past few years. The industry is now welcoming a new cohort of designers and engineers as people are showing a newfound interest in the profession.
SEL Index of Freedom Highlights Top States for Business and Trade
07/15/2025 | SELSchweitzer Engineering Laboratories (SEL), a global leader in power system protection, automation and control solutions, has released the 2025 SEL Index of Freedom, an evaluation of the business climate across the 50 U.S. states.
TTCI Joins Printed Circuit Engineering Association to Strengthen Design-to-Test Collaboration and Workforce Development
07/09/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a leading provider of electronic test and manufacturing solutions, is proud to announce its membership in the Printed Circuit Engineering Association (PCEA), further expanding the company’s efforts to support cross-functional collaboration, industry standards, and technical education in the printed circuit design and manufacturing community.
GlobalLogic, Volvo Cars Deepen Collaboration to Engineer the Future of Mobility
07/09/2025 | GlobalLogicGlobalLogic Inc., a Hitachi Group Company and leader in digital engineering, has announced it has been selected in Volvo Cars’ partnership ecosystem as one of the strategic partners within engineering services globally.
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.