The following is adapted from a Masdar Institute article by Erica Solomon.
The cost of solar power is beginning to reach price parity with cheaper fossil fuel-based electricity in many parts of the world, yet the clean energy source still accounts for just slightly more than 1% of the world’s electricity mix.
Solar, or photovoltaic (PV), cells, which convert sunlight into electrical energy, have a large role to play in boosting solar power generation globally, but researchers still face limitations to scaling up this technology. For example, developing very high-efficiency solar cells that can convert a significant amount of sunlight into usable electrical energy at very low costs remains a significant challenge.
A team of researchers from MIT and the Masdar Institute of Science and Technology may have found a way around this seemingly intractable tradeoff between efficiency and cost. The team has developed a new solar cell that combines two different layers of sunlight-absorbing material to harvest a broader range of the sun’s energy. The researchers call the device a “step cell,” because the two layers are arranged in a stepwise fashion, with the lower layer jutting out beneath the upper layer, in order to expose both layers to incoming sunlight. Such layered, or “multijunction,” solar cells are typically expensive to manufacture, but the researchers also used a novel, low-cost manufacturing process for their step cell.
The team’s step-cell concept can reach theoretical efficiencies above 40% and estimated practical efficiencies of 35%, prompting the team’s principal investigators — Masdar Institute’s Ammar Nayfeh, associate professor of electrical engineering and computer science, and MIT’s Eugene Fitzgerald, the Merton C. Flemings-SMA Professor of Materials Science and Engineering — to plan a startup company to commercialize the promising solar cell.
Fitzgerald, who has launched several startups, including AmberWave Systems Corporation, Paradigm Research LLC, and 4Power LLC, thinks the step cells might be ready for the PV market within the next year or two.
The team presented its initial proof-of-concept step cell in June at the 43rd IEEE Photovoltaic Specialists Conference in Portland, Oregon. The researchers have also reported their findings at the 40th and 42nd annual conferences, and in the Journal of Applied Physics and IEEE Journal of Photovoltaics.
Beyond silicon
Traditional silicon crystalline solar cells, which have been touted as the industry’s gold standard in terms of efficiency for over a decade, are relatively cheap to manufacture, but they are not very efficient at converting sunlight into electricity. On average, solar panels made from silicon-based solar cells convert between 15% and 20% of the sun’s energy into usable electricity.
Silicon’s low sunlight-to-electrical energy efficiency is partially due to a property known as its bandgap, which prevents the semiconductor from efficiently converting higher-energy photons, such as those emitted by blue, green, and yellow light waves, into electrical energy. Instead, only the lower-energy photons, such as those emitted by the longer red light waves, are efficiently converted into electricity.
To harness more of the sun’s higher-energy photons, scientists have explored different semiconductor materials, such as gallium arsenide and gallium phosphide. While these semiconductors have reached higher efficiencies than silicon, the highest-efficiency solar cells have been made by layering different semiconductor materials on top of each other and fine-tuning them so that each can absorb a different slice of the electromagnetic spectrum.
These layered solar cells can reach theoretical efficiencies upward of 50%, but their very high manufacturing costs have relegated their use to niche applications, such as on satellites, where high costs are less important than low weight and high efficiency.
The Masdar Institute-MIT step cell, in contrast, can be manufactured at a fraction of the cost because a key component is fabricated on a substrate that can be reused. The device may thus help boost commercial applications of high-efficiency, multijunction solar cells at the industrial level.
Page 1 of 2
Suggested Items
The Chemical Connection: Common Misconceptions in Wet Processing
04/28/2025 | Don Ball -- Column: The Chemical ConnectionInitially, I thought an April Fool’s column would be fun this month. I could highlight some of the crazier ideas and misconceptions I’ve witnessed over the years from potential customers and we could all have a good laugh. For example, there was a first-time buyer of a ferric chloride etcher (with no regeneration system) who was astonished to learn that he had to put fresh etchant in the system occasionally to maintain production.
Lam Research Donates Leading-Edge Etch System to Accelerate Nanofabrication R&D at UC Berkeley
04/17/2025 | PRNewswireLam Research Corp. announced the donation of its innovative multi-chamber semiconductor etching system to the Marvell Nanofabrication Laboratory at the University of California, Berkeley to advance research and development (R&D) for next-generation chip technologies.
Chemcut Corporation Announces Atlantic Micro Tool Expanded Sales Territory
03/11/2025 | Chemcut CorporationChemcut Corporation, the US based manufacturer of Wet Process Equipment, has expanded Atlantic Micro Tools sales territory to include DE, MD, VA, WV, NY, PA, NC, SC, TN, GA, AL, FL, MS, Ontario. Atlantic Micro Tool has represented Chemcut for over 15 years in the States of ME, NH, VT, RI, CT, NJ, New York City MA, NY counties of Nassau, Suffolk, Quebec & Eastern Ontario.
TRUMPF, SCHMID Group Enable Cost-effective High-speed Chips
01/24/2025 | SCHMID GroupTRUMPF and the SCHMID Group are developing an innovative manufacturing process for the latest microchip generation for the global chip industry.
Connect the Dots: Designing for Reality: Strip-Etch-Strip
12/05/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we focused on pattern plating. At this point, we are close to completing our boards and ready for the strip-etch-strip (SES) process. By this stage of the manufacturing process, we have laminated all the internal layers together, drilled the through-holes, applied the image to the external layers through photoresist, plated the copper in those channels to beef up the copper thickness for traces, pads, and through-holes, added a layer of electrolytic tin over the top of that copper to protect it during subsequent stages of production.