-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
High-Throw DC Acid Copper Formulation for Vertical Continuous Electroplating Processes
September 5, 2017 | Saminda Dharmarathna, et al.Estimated reading time: 1 minute

Abstract
The electronics industry has grown immensely over the last few decades owing to the rapid growth of consumer electronics in the modern world. New formulations are essential to fit the needs of manufacturing printed circuit boards and semiconductors. Copper electrolytes for high throwing power applications with high thermal reliability and high throughput are becoming extremely important for manufacturing high aspect ratio circuit boards.
Here we discuss innovative DC copper metallization formulations for hoist lines and vertical continuous plating (VCP) applications with high thermal reliability and throughput for high aspect ratio PCB manufacturing. The formula has a wide range of operation for current density. Most importantly, plating at high current density using this DC high-throw acid copper process offers high throughput, excellent thermal reliability, and improved properties for present-day PCB manufacturing. The operating CD range is 10–30 ASF where micro distribution of ≥ 85% for AR 8:1 is achievable. This formulation offers bright ductile deposits where plating parameters are optimized for improved micro-distribution and the properties of the plated copper deposit such as tensile strength and elongation. The thermal reliability and properties of the deposits were examined at different bath ages. Measured properties are: Elongation ≥ 18% and tensile strength ≥ 40,000 psi. All the additives can be easily controlled by cyclic voltammetry stripping (CVS) analysis.
Introduction
Copper has a high electrical conductivity and is relatively inexpensive compared to other high conductive metals such as silver. Therefore, the use of copper in the mass production of PCBs and semiconductors grew exponentially in the last few decades[1]. With today’s complex circuit board designs an even deposition with specific physical properties is necessary to meet the standards. Especially with high aspect ratios, through-hole plating to obtain desired plating distribution is much more challenging. During the quality control inspection, a board can be rejected if there is insufficient copper on the center walls of the through-holes. Moreover, plated copper should meet the minimum requirements of physical properties such as tensile strength and elongation (T&E) to withstand the high temperature applications[2].
To read the full version of this article which appeared in the August 2017 issue of The PCB Magazine, click here.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.