Pioneer Circuits’ Solutions Used in NASA's PUFFER Collapsible Bot
February 5, 2018 | Pioneer CircuitsEstimated reading time: 2 minutes
The PUFFER (Pop-Up Flat Folding Explorer Robot) collapsible micro-rover is a part of NASA’s “Game Changing Development Program.” It is a compact rover that will ride on board with future space vehicles to land on space bodies such as planets and asteroids for photographs and microanalysis.
Figure 1: The original PUFFER prototype before working with Pioneer Circuits for the new hinge technology.
The PUFFER micro-rover utilizes a new, patented hinge technology containing a high-temperature woven fabric that is compatible with PWB rigid-flex manufacturing. JPL utilized Pioneer Circuits’ concurrent engineering services to help with the new developments that were a key enabler for the PUFFER project.
The Challenge
The PUFFER’s concept addresses the challenge of developing robotic mobility in space exploration. The PUFFER challenge was to design a micro-rover capable of surviving the harsh environments of deep space while also being able to collapse and fold into more compact forms that will fit into small areas for detailed photographs and surface analysis.
The original PUFFER prototypes were having issues with passing their cycle and drop test operations. Design challenges included the mechanical design of the rigid-flex PCB joints to be able to work on a repeatedly folding robot structure, and for the PCB’s copper traces to last the lifetime of the rover. The original materials used for the joints were not compatible with current PCB manufacturing processes, and the PUFFER was only able to withstand 1,000 test cycles—a very conservative number for a Mars application.
Through concurrent engineering, Pioneer Circuits found the material and developed a high-temperature woven fabric hinge technology that is compatible with PCB rigid-flex manufacturing. The rigid-flex circuit technology is integrated into a highly reliable, composite structure that is the first origami micro-rover configuration ever developed.
Figure 2: A close-up of Pioneer Circuits and JPL’S hinge technology with woven fabric.
To make the technology possible, Pioneer Circuits developed new bonding and process capabilities that are compatible with this unique challenge. Integration of the high-temperature woven material as a layer in the PCB stack-up allowed the mechanical and electrical functions to overcome limitations of typical polyimide builds. Using the material as a hinge would makes the PUFFER more reliable and able to repeatedly collapse without damaging the copper traces. The new PUFFER design was capable of withstanding drop-testing that simulated the harsh space body environments, and was is able withstand over 5,000 cycle tests—500% more than the original designs.
Figure 3: The final full and collapsed version of the PUFFER microrover.
Impact
Pioneer Circuits’ work with JPL on the development of the PUFFER has resulted in technology that is now being patented. The PUFFER micro-rover will now be able to ride on board with future space missions for thorough surface analysis. The collapsing capability allows the PUFFER’s microcamera to focus for microanalysis. This “Game Changing” development will give NASA and JPL a less-expensive opportunity to explore the surfaces of space that were never before reached.
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.