-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueProduction Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Automation and the Smart Factory: Introduction to Industry 4.0
March 20, 2019 | Happy Holden, I-Connect007Estimated reading time: 4 minutes

Editor's Note: Parts of this article include excerpts from and expansions of Automation and Advanced Procedures in PCB Fabrication.
There's a lot of talk about automation, but I find that there is very little available on automation planning. This is one of my specialties. I started by studying for an MSEE in control theory, which went well with my bachelor’s degree in chemical engineering because I specialized in process control and IC manufacturing.
Before we get started, remember that the benefits will be derived only if certain cardinal principles are observed. This article briefly outlines the background of computer-integrated manufacturing (CIM) and its evolution to Industry 4.0 and smart factories.
The characteristics of successful automation application in manufacturing depend on how well business and technical management understand and promote the strategies, tactics, and philosophies used in modern manufacturing. Successful automation implementation can be enhanced in any company, small or large, by reviewing the philosophies of CIM, automation, management roles, mechanization, SPC, TQC, Lean, MRP, and DFM.
Computer-integrated Manufacturing (CIM)
The strategies outlined here are considered CIM, but the current vocabulary now is “Industry 4.0” or “smart factories.” Products include various software, computer, networking, interface, and measurement systems. At that time, HP had been in the automation business longer than any other company. It all started with requests from the government and others for automated test and measurement systems. Because of the need to automate various measurement instruments and systems, HP created the first machine-to-machine, plug-and-play protocol called HP Interface Bus (HP-IB). This was later formalized into the IEEE-488 communication standard.
CIM architecture was defined as early as 1980 when the CASA/SME published a presentation of computer-integrated manufacturing to provide a common set of terms for its members. The ring surrounding the wheel represents various influencing factors for the development of CIM such as expertise as a human factor, productivity as an economic factor, and computer technology as a technological factor.
The wheel itself contains four functions, including engineering design, manufacturing planning, production control, and factory automation (Figure 1). If the individual functions are connected to each other and operate with a common database, an integrated system architecture is created and represented by the hub of the wheel. This development has resulted in the realization that CIM, apart from factory automation and functions, is indirectly related to the operational performance, such as design (product/process), and production planning and control.
Additionally, CIM is linked to common business administrative tasks such as manufacturing management, strategic planning, finance, marketing, and human resource management. A further innovation was the addition of information resource management and communications between the different functions. Therefore, a common database alone is insufficient for achieving integration. The all-embracing nature of the CIM wheel reflects the idea promoted by CASA/SME that CIM must be viewed as a concept embracing the company as a whole.
The Outer Ring
The common business administrative tasks related to CIM are located on the outer ring of the wheel. They primarily form the company’s connection to the outside world. Data processing applications can be found in the most diverse areas. Most software systems applied in these areas were originally self-styled developments, which are increasingly being replaced with standard commercial software packages. Currently, this software is installed primarily on mainframes. Overlaps of its functionality exist mainly with the software of the production planning and control.
The Inner Ring
Functions related to the operational performance of the company are located on the inner ring of the wheel. Data processing applications for the development and design area are CAD simulations; analysis programs, such as the finite element method (FEM); and drawing storage and management, such as group technology (GT).
The types of data found in this area are diverse, including drawings, technical specifications, and bills of materials (BOMs). Moreover, data in manufacturing companies is often disorderly. There may be several types of part numbers and BOMs, or more than one GT or CAD system, each with its own computer internal representation of geometric data. The applied software rarely runs on the same hardware, resulting in many different hardware systems.
The second group of applications on the inner ring of the wheel is attributed to process planning, production planning, and control. It comprises tasks—such as routing generation, resource planning, material requirements planning, capacity planning, order distribution, supervision—and planning of quality assurance—such as quality process and resource planning. In the United States, software in the production planning and control area mostly runs on large clients or servers, although the software itself is more frequently supplied by several software houses and not by the computer vendor.
As in the common business administrative area, the software packages, which are integrated within themselves, have a modular structure and their single components can also be bought and applied. Therefore, a company rarely purchases and installs all modules of such a package. This results in functional overlaps and data redundancy. One example of this would be material requirements, and planning and purchasing systems.
The third group on the inner ring includes the automation of manufacturing installations. Examples include robots, numerically controlled machines, flexible manufacturing systems, and computer-aided measuring and testing methods. This area is characterized by the extreme heterogeneity of the systems involved, the diversity of which being much more pronounced than in the previously mentioned groups of functions.
To read the full article, which appeared in the March 2019 issue of SMT007 Magazine, click here.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
EMS Solutions Expands Workforce to Meet Rising Demand for U.S.-Based Electronics Manufacturing
10/17/2025 | EMS SolutionsEMS Solutions, a premier regional provider of Electronics Manufacturing Services (EMS), has announced several new hires across key departments as the company continues to grow its capabilities and meet increasing customer demand.
Jabil Announces Board Transitions
10/17/2025 | JabilJabil Inc. announced that Executive Chairman of the Board of Directors Mark T. Mondello and Directors Kathleen A. Walters and Jamie Siminoff will not seek re-election at Jabil’s Annual Meeting of Stockholders in January 2026.
StenTech Strengthens Precision Parts Platform with AME Acquisition
10/17/2025 | StenTechStenTech, North America’s leading provider of SMT printing solutions and precision manufacturing, has announced the acquisition of Advanced Metal Etching, Inc. (AME), a recognized specialist in chemically etched and laser cut precision parts.
MKS’ Atotech, ESI to Participate in TPCA Show & IMPACT Conference 2025
10/17/2025 | MKS’ AtotechMKS Inc., a global provider of enabling technologies that transform our world, announced that its strategic brands Atotech (process chemicals, equipment, software, and services) and ESI (laser systems) will showcase their latest range of leading manufacturing solutions for printed circuit board (PCB) and package substrate manufacturing at the upcoming 26th TPCA Show 2025 to be held at the Taipei Nangang Exhibition Center from 22-24 October 2025.
Primax, Vieureka Partner to Drive Next-Generation EDGE AI
10/17/2025 | PRNewswirePrimax Electronics Ltd., a leading global ODM with AI sensor fusion technologies, and Vieureka Inc., a Japanese edge AI innovator, announced a strategic partnership to develop a next-generation edge AI camera.