-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
ICT or Flying Probe: Which Test Is Best for Your Assembly?
July 10, 2019 | Russell Poppe, JJS ManufacturingEstimated reading time: 3 minutes

In-circuit test (ICT) and flying probe are two of the most popular types of automated test equipment (ATE) used in electronic printed circuit board assembly (PCBA). But what sets them apart? And how can you decide on the test strategy that is going to work best for your assemblies? In this article, I highlight the benefits (and the shortcomings) of both ICT and flying probe with a specific focus on three areas: product design, coverage, and cost.
1. Product Design
A good quality test program (also known as good coverage) will rely on the quality of your computer-aided design (CAD) data and schematics. The CAD data is used to generate the basic test programme, which ensures that information is sourced from the original design rather than any manual interpretation of other data. Good quality populated, and unpopulated, sample PCBAs are also vital for fine-tuning the test programmes, debugging, and making any fixtures so that the assemblies physically fit as they were intended.
Thinking about product design for a moment, what are the differences between each test solution which you may want to keep in mind? Flying probe machines, like those offered by Takaya, can probe the ends of component pads and uncovered vias to get access to the electrical networks. ICT will require at least a 50thou wide test pad per net, which has been designed into the PCB upfront and is used as a target for the fixed test probe. Double-sided fixtures can be costly, so these should, ideally, be on one side only of the PCB.
2. Coverage
When I talk about coverage, I’m referring to how much of the circuit you are actually able to test. Both ICT and flying probe carry out what is called a manufacturing defects analysis (MDA), which allows for the majority of the most common process faults that are likely to occur. These can include open circuits (due to insufficient or faulty soldering), short circuits, passive component measurements (resistors and capacitors), diode and transistor orientation, and basic supply voltage measurements.
However, given that these elements are common to both types of the testing platform, what sets them apart?
- Most flying probe systems will offer some form of limited optical inspection, which adds coverage for those components that can’t be accessed electrically; ICT fixtures usually won’t offer the option of optical inspection
- In addition to vectorless test, integrated circuits (ICs) can also include some powered (albeit basic) functional testing to check the soldering of pins to the PCB through a non-contact capacitive probe or plate; in most cases, flying probe is limited to only vectorless test
- ICT can also provide limited analogue and digital measurements, which flying probe isn't capable of due to the limited number of probes
3. Cost
The programming cost will depend on the complexity of the assembly but is broadly the same for either test solution (potentially around $2,500 or so). When it comes to other charges associated with test, however, there are some key differences to bear in mind:
- The fixture costs of flying probe are usually zero; in contrast, an ICT fixture can run to nearly $5,000
- The development lead time for flying probe is typically less than a week; ICT can take up to six weeks for fixture manufacture and programming
- In the event that your product design changes in any way, it will only require a programme change; in the case of ICT, it could well require a new fixture as well if any components or test pads have moved
- The actual machine test time of ICT is usually less than a minute, which means it is ideal for working quickly through larger batches; flying probe, on the other hand, can take several minutes, which means it's often more suited to smaller batches
- The speed of ICT also means that it is relatively inexpensive, often coming in at less than $1.24 per unit; flying probe is a much slower process and can cost $62 or more per assembly)
If you're still unsure about which test option is best for your product, you may find this simple visual checklist useful in comparing the pros and cons:
When it comes to test, each product will have its own unique requirements. But by keeping in mind the primary benefits (and points of difference) of the two platforms, you should feel much better placed to select the best test strategy for your PCBA assembly.
Russell Poppe is the director of technology at JJS Manufacturing.
Suggested Items
Robust AI Demand Drives 6% QoQ Growth in Revenue for Top 10 Global IC Design Companies in 1Q25
06/15/2025 | TrendForceTrendForce’s latest investigations reveal that 1Q25 revenue for the global IC design industry reached US$77.4 billion, marking a 6% QoQ increase and setting a new record high. This growth was fueled by early stocking ahead of new U.S. tariffs on electronics and the ongoing construction of AI data centers around the world, which sustained strong chip demand despite the traditional off-season.
Cadence Advances Design and Engineering for Europe’s Manufacturers on NVIDIA Industrial AI Cloud
06/13/2025 | Cadence Design Systems, Inc.At NVIDIA GTC Paris, Cadence announced it is providing optimized solutions for the world’s first industrial AI cloud in collaboration with NVIDIA.
Zuken Autorouters Embrace Collaborative AI
06/12/2025 | Andy Shaughnessy, Design007 MagazineMaybe you’ve never liked autorouters; if so, you’re not alone. As Andy Buja, Zuken’s technical account manager for PCB Solutions, admits, autorouters are not perfect. But today’s autorouters allow designers a greater level of control than ever before, especially routers that incorporate collaborative AI.
Bridging the Knowledge Gap in Test: A Conversation with Bert Horner
06/11/2025 | Barry Matties, I-Connect007Bert Horner is a seasoned industry veteran and co-creator of The Test Connection, Inc. (TTCI), a test and inspection company spanning over 45 years. In this candid conversation, Bert reflects on the challenges our industry faces with the retirement of career professionals and the subsequent loss of critical tribal knowledge. As he unveils The Training Connection’s innovative training initiatives, Bert emphasizes the importance of evolving educational programs that align with industry needs, particularly in design for test (DFT), and sheds light on strategies being implemented to foster the next generation of engineers.
The Shaughnessy Report: Planning Your Best Route
06/10/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportDesigners don’t like autorouters, period. In my 26 years of covering PCB design and EDA tools, I’ve met about 25 designers who admit to using autorouters regularly. Two of these, Barry Olney and Stephen Chavez, have articles in this issue. If experts like these use routers, why haven’t you tried one?