-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
3D Additive Electronics Manufacturing: Are We Nearing an Inflection Point?
May 28, 2020 | Dan Feinberg, I-Connect007Estimated reading time: 7 minutes

I have been following the advances in 3D additive circuit manufacturing for the past six years, from post-conception to fast-turn prototype production, and from simple printing of conductors on a dielectric to being able to make a loaded circuit board complete with printed resistors and capacitors. In terms of volume, we have gone from very low volume prototypes to moderate volume production circuits. It seems that the rate of progress has accelerated significantly.
We are progressing from the production of a standard circuit board using only 3D printing to printing both the circuit and some components directly onto a base unit. For example, a circuit assembly designed to measure and report temperature can be printed directly onto the component or cylinder that generates the heat. Antennas can be printed directly into a helmet or onto a transmitting/receiving device, and connectors can be printed instead of mounted and connected.
Today, fully functional PCBs with integrated circuit components and other embedded semiconductor devices can be created with 3D printers. The more advanced 3D printing equipment and consumables can produce resolution near micron-level. More than one type of material can be deposited at the same time, which allows for 3D printing of integrated circuits because the co-deposition of conductors and semiconducting materials must be done at the same time. Applications, such as semiconductor chip fabrication, require the integration of different materials simultaneously.
3D additive manufacturing of electronic devices may be at the point, both technically and commercially, where standard circuit board manufacturing was in the ‘50s and ‘60s. That’s when we began the transition from chassis-mounted, hard-wired vacuum tube sockets and point-to-point hand-soldered components to circuit boards with discrete transistors and passive components.
3D-Printed Electronics Webinar
Recently, I was invited to attend a detailed and broadly informative webinar “The Strength of 3D-Printed Electronics” by nScrypt, which covered the status and advances in the use of 3D printing for electronic device design and manufacture.
nScrypt is an Orlando-based company founded in 2002 that focuses on 3D printing. Here’s what I learned about the company: “nScrypt provides tools and processes for next-generation electronic products. Their Factory in a Tool (FiT) has the ability to make complete products on a single platform by using multi-material and multi-processes using precision motion and control. Existing nScrypt machines are made for the existing factory floor where precision processes matter in high volume or stand-alone for personalized products manufactured using digital files. nScrypt tools are made to run 24/7/365 manufacturing products, even when you sleep.”
This webinar focused on the current and future uses of 3D additive manufacturing. I found the speakers to be very informative as they discussed their experience with a broad range of 3D additive manufacturing capabilities, and what they expect as they plan ahead. Here’s what I learned from each of the speakers.
James Zunino
James Zunino is co-founder of the U.S. Army’s additive manufacturing community of practice and a materials engineer at the Combat Capabilities Development Command Armaments Center (CCDCAC) in New Jersey.
He talked about transformative manufacturing techniques for novel printed armament technologies in the areas of additive manufacturing, 3D printing of polymers and metals for flex hybrid electronics, smart manufacturing, automation, robotics, and digital manufacturing. These advanced manufacturing capabilities, James said, are now being used at 18 sites in the United States. Some of the current system efforts include munition power sources, ammunition and warheads, instrumentation for training and simulation, armaments and munitions, remote weapons, and special operations.
My overall impressions are that 3D processes are being used by the military to significantly improve the capability of weapons and provide power solutions with the goal to print as much as possible.
Dr. Kenneth Church
Dr. Kenneth Church is the CEO of nScrypt and detailed current and future efforts in printing electronics. Take the evolution of the smartphone as an example, he said.
The latest phones are full of “stuff,” such as glue and solder—much of which can be eliminated with additive manufacturing that uses printed adhesives, solder, printed antennas, and components. Ken demonstrated with a four-element-phased array antenna complete with an RF structure—a relatively complicated 3D-printed device.
He also mentioned that, as a partner with NASA, they now have a 3D-printing device used on the International Space Station.Page 1 of 2
Suggested Items
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
SolderKing’s Successful Approach to Modern Soldering Needs
06/18/2025 | Nolan Johnson, I-Connect007Chris Ward, co-founder of the family-owned SolderKing, discusses his company's rapid growth and recent recognition with the King’s Award for Enterprise. Chris shares how SolderKing has achieved these award-winning levels of service in such a short timeframe. Their secret? Being flexible in a changing market, technical prowess, and strong customer support.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.