-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
The Future Is Electric
April 13, 2021 | KJ McCann and Brian Zirlin, Aurora CircuitsEstimated reading time: 2 minutes

Worldwide research and development of the automotive industry began as early as the 17th century and since then has taken several different design paths, with each country forging its own innovative trail and hundreds of prototypes emerging into the market. Vehicles—with steam-powered, electric, and combustion engines—began to play a major role, not only in the Industrial Revolution, but in everyday life. Although many believe that electric vehicles (EVs) are relatively new to the market, they have actually been around since 1832. Unfortunately, for the environment at least, gasoline-powered vehicles won the race as mass production, automatic starters, and cheaper oil prices gave them the upper hand. So, where did the major innovation for EVs truly begin?
While gasoline-powered engines emerged as the leading design, they were not without fault. For that reason, General Motors released its first electric car in 1996—the EV1—however, the push to bring this car to market was feeble, resulting in unfavorable outcomes. EV1s were sold solely through “limited lease-only agreements,” and only to residents of Los Angeles (California). The scant supply resulted in GM’s very selective and restrictive consumer bias. These cars often landed in the hands of the elite, making the idea of owning an EV unattainable to the average consumer. Ultimately, GM decided that electric cars were an unprofitable niche of the automobile market; this resulted in the company buying back and crushing most of its electric cars. The undoing of this product line led to an industry pullback from EVs as whole.
As years went by, automotive manufacturers failed to automate and mass produce, and the product line continued its downfall. The pushback on electric vehicles continued as the Bush Administration proposed $1.2 billion in research funding to develop clean, hydrogen-powered automobiles. The federal government joined the oil and car industry to push hydrogen fuel cell vehicles, knocking EVs a decade further away. Despite the strong pushback from car manufacturers to switch to EVs, Toyota moved forward, releasing its completely redesigned Prius in 2003. Finally, the consumer demand for EVs met market expectations. Consumer sales surpassed monthly sales targets more than 100%. But again, these vehicles were driven by the elite and high society celebrities. In 2006, Tesla Motors, a mere startup company from Silicon Valley, promised to deliver a vehicle with the luxury feel of a sports car, combined with a range of 200+ miles. In 2008, that dream became reality when Elon Musk, chairman of Tesla, debuted the first Tesla Roadster. This sent shock waves through the automaker industry as consumers flocked to EVs in greater numbers than expected.
To read this entire article, which appeared in the March 2021 issue of PCB007 Magazine, click here.
Suggested Items
Nolan's Notes: The Next Killer App in Component Manufacturing
05/02/2025 | Nolan Johnson -- Column: Nolan's NotesFor quite a while, I’ve been wondering what the next “killer app” will be in electronics manufacturing and why it has been so long since the last disruptive change in EMS. I believe the answer lies in artificial intelligence, which has exploded as the next disruptor.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Elephantech, Logitech Together Drive Disruptive Electronics Innovation
05/01/2025 | ElephantechElephantech Inc. announced a groundbreaking collaboration with Logitech International to revolutionize peripherals manufacturing and the printed circuit board (PCB) industry.
SEL Receives Purdue Senior Design Partner of the Year Award
05/01/2025 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL) has been awarded the Senior Design Partner of the Year Award from the Edwardson School of Industrial Engineering at Purdue University.