IDTechEx Reports on Five Key Technology Trends for Tomorrow's Electric Car
November 4, 2022 | PRNewswireEstimated reading time: 5 minutes

The automotive sector is the largest transport sector, with some 80–90 million cars sold each year globally. Indeed, a global fleet of approximately 1.1 billion cars in use makes the greatest contributions to road emissions, leading the sector to become a natural focal point for green policymakers.
While electric car projects date back one hundred years, electric car markets as we know them today have been growing since circa 2011. In 20 years, IDTechEx predicts electric cars will generate 76% of all e-transport revenues. Due to their scale, car markets create the largest opportunities for players in the electric vehicle supply chain, from advanced materials through to battery packs, power electronics, and electric motors. Moreover, they drive the rapid pace of innovation that enables electrification in other transport sectors, whether in technology, regulation, or business models.
To learn more, the new IDTechEx report, 'Electric Cars 2023-2043', provides a deep-dive into future automotive markets with long-term granular forecasts. Regional coverage includes the US, China, Norway, the UK, France, Germany, the Netherlands, Denmark, and RoW. Technology coverage includes battery-electric (BEV), hybrid (PHEV & HEV), and fuel cell (FCEV) cars; autonomous vehicles (L2, L3, L4); Li-ion batteries (NMC, NCA, LFP, silicon, solid-state); electric motors (PM, WRSM, ACIM, Axial-flux, In-wheel); power electronics (SiC, Si IGBT) and more. In the following article, IDTechEx outlines key trends from the technology chapters covered in this report.
Advanced Li-ion Battery Cells & Packs
Li-ion batteries based on graphite anodes and layered oxide cathodes (NMC, NCA) have come to dominate large parts of the electric vehicle markets. However, as they start to reach their performance limits and as environmental and supply risks are highlighted, improvements and alternatives to Li-ion batteries become increasingly important.
Advanced Li-ion refers to silicon and Li-metal anodes, solid-electrolytes, high-Ni cathodes, as well as various cell design factors. Given the importance of the electric vehicle market, specifically battery electric cars, in determining battery demand, Li-ion is forecast to maintain its dominant position. However, gradual improvements to cathodes, anodes, cell design, and energy density are key. The IDTechEx report finds up to 400Wh per kg battery cells will have a presence in mainstream markets by 2030.
Innovation is also happening at the pack level. Several different materials are required to assemble a battery pack, including thermal interface materials, adhesives, gaskets, impregnation, potting, fillers, and more. A general trend towards larger cell form factors and non-modular cell-to-pack battery designs is underway, which will reduce the number of connections, busbars, and cables between cells and modules.
Power Electronics
In automotive power electronics (inverters, onboard chargers, DC-DC converters), key advancements are being made to improve powertrain efficiency, allowing for either battery pack capacity reduction or improved range. One of the key avenues to achieving greater efficiencies is the transition to silicon carbide MOSFETs and high voltage vehicle platforms at or above 800V. Indeed, Renault, BYD, GM, Hyundai, and others have announced 800V vehicle platforms which will adopt silicon carbide MOSFETs in their power electronics through 2025.
The transition is presenting fresh challenges for power module package materials, as higher switching frequencies, increased power densities and increased operational temperatures are demanded, all whilst maintaining a 15-year service life. The report finds that 800V platforms and SiC inverters will rise to at least 10% of the market by 2030. As the power density of semiconductor chips increases exponentially, new double-sided cooling designs, copper wirebonds, and lead frames will enable the trend.
Electric Motors
Electric motor markets are still evolving today with new designs improving power and torque density and more considerations around the materials used. These are not just incremental improvements either, with developments such as axial flux motors and various OEMs eliminating rare-earths altogether.
There are several key performance metrics for electric motors. Power and torque density enables improved driving dynamics in a smaller and lighter package, with weight and space being at a premium in EVs. Another critical area is drive cycle efficiency. Improving efficiency means that less of the precious energy stored in the battery is wasted when accelerating the vehicle, leading to an improved range from the same battery capacity. Due to the many different considerations in motor design, the EV market has adopted several different solutions, including permanent magnet, induction, and wound-rotor motors.
The report reveals that while motors will remain dominated by permanent magnets, there will be opportunities for magnet free variants as cost and sustainability come to the forefront in the coming years.
Fuel Cells
Opportunities for fuel cells in car markets are limited, although markets are still growing, underpinned by government support. The deployment of fuel cells within vehicles is not a new concept. Major OEMs, including Toyota, Ford, Honda, GM, Hyundai, Volkswagen, Daimler, and BMW, have invested large sums over the past 30 years in advancing the technology. For passenger cars, a huge amount of effort and expense has gone into developing fuel cells, but in 2022 only two major OEMs, Toyota and Hyundai, have FCEV cars in production, and fewer than 20,000 FCEVs were sold in 2021.
Fuel cell vehicle deployments face considerable challenges, including decreasing the cost of fuel cell system components and rolling out sufficient hydrogen refueling infrastructure. Also essential will be the availability of low-cost 'green' hydrogen, produced by the electrolysis of water using renewable electricity, which analysis in the new IDTechEx report highlights will be vital to FCEVs delivering the environmental credentials on which they are being sold.
Autonomy
'Autonomous vehicle' (AV) is an umbrella term for the six levels as defined by the SAE. Today, most new cars are arriving with the option of level 2 functionality, and the industry is technically ready for level 3 once regulatory hurdles clear.
In recent years, vast improvements to autonomous vehicle technologies such as radar, lidar, HD cameras, and software have propelled robotaxis to the cusp of market readiness. In fact, in certain scenarios level 4 autonomy is (debatably) now commercialized in 2022, with Cruise and Baidu introducing initial services in the US and China, respectively. IDTechEx forecasts reveal how these services will come to dominate within 20 years. Overall, the report finds autonomous vehicles will become a massively disruptive technology that will grow rapidly at a rate of up to 47% to transform the auto market over the next two decades.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.