Dive of the RoboBee
October 22, 2015 | Harvard UniversityEstimated reading time: 3 minutes
In 1939, a Russian engineer proposed a "flying submarine" -- a vehicle that can seamlessly transition from air to water and back again. While it may sound like something out of a James Bond film, engineers have been trying to design functional aerial-aquatic vehicles for decades with little success. Now, engineers may be one step closer to the elusive flying submarine.
The biggest challenge is conflicting design requirements: aerial vehicles require large airfoils like wings or sails to generate lift while underwater vehicles need to minimize surface area to reduce drag.
To solve this engineers at the Harvard John A. Paulson School of Engineering and Applied Science (SEAS) took a clue from puffins. The birds with flamboyant beaks are one of nature's most adept hybrid vehicles, employing similar flapping motions to propel themselves through air as through water.
"Through various theoretical, computational and experimental studies, we found that the mechanics of flapping propulsion are actually very similar in air and in water," said Kevin Chen, a graduate student in the Harvard Microrobotics Lab at SEAS. "In both cases, the wing is moving back and forth. The only difference is the speed at which the wing flaps."
Coming from the Harvard Microrobotics Lab, this discovery can only mean one thing: swimming RoboBees.
For the first time, researchers at SEAS have demonstrated a flying, swimming, insect-like robot -- paving the way for future duel aerial aquatic robotic vehicles. The research was presented recently in a paper at the International Conference on Intelligent Robots and Systems in Germany, where first author Chen accepted the award for best student paper.
The paper was co-authored by graduate student Farrell Helbling, postdoctoral fellows Nick Gravish and Kevin Ma, and Robert J. Wood, the Charles River Professor of Engineering and Applied Sciences at SEAS and Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering.
The Harvard RoboBee, designed in Wood's lab, is a microrobot, smaller than a paperclip, that flies and hovers like an insect, flapping its tiny, nearly invisible wings 120 times per second. In order to make the transition from air to water, the team first had to solve the problem of surface tension. The RoboBee is so small and lightweight that it cannot break the surface tension of the water. To overcome this hurdle, the RoboBee hovers over the water at an angle, momentarily switches off its wings, and crashes unceremoniously into the water in order to sink.
Next the team had to account for water's increased density.
"Water is almost 1,000 times denser than air and would snap the wing off the RoboBee if we didn't adjust its flapping speed," said Helbling, the paper's second author.
The team lowered the wing speed from 120 flaps per second to nine but kept the flapping mechanisms and hinge design the same. A swimming RoboBee changes its direction by adjusting the stroke angle of the wings, the same way it does in air. Like a flying version, it is still tethered to a power source. The team prevented the RoboBee from shorting by using deionized water and coating the electrical connections with glue.
While this RoboBee can move seamlessly from air to water, it cannot yet transition from water to air because it can't generate enough lift without snapping one of its wings. Solving that design challenge is the next phase of the research, according to Chen.
"What is really exciting about this research is that our analysis of flapping-wing locomotion is not limited to insect-scaled vehicles," said Chen. "From millimeter-scaled insects to meter-scaled fishes and birds, flapping locomotion spans a range of sizes. This strategy has the potential to be adapted to larger aerial-aquatic robotic designs."
"Bioinspired robots, such as the RoboBee, are invaluable tools for a host of interesting experiments -- in this case on the fluid mechanics of flapping foils in different fluids," said Wood. "This is all enabled by the ability to construct complex devices that faithfully recreate some of the features of organisms of interest."
Suggested Items
indie Semiconductor Reports Q1 2025 Results
05/13/2025 | BUSINESS WIREindie Semiconductor, Inc., an automotive solutions innovator, today announced first quarter results for the period ended March 31, 2025. Q1 revenue was up 3.3 percent year-over-year to $54.1 million with Non-GAAP gross margin of 49.5 percent. On a GAAP basis, first quarter 2025 operating loss was $38.9 million compared to $49.6 million a year ago.
Siemens Leverages AI to Close Industry’s IC Verification Productivity Gap in New Questa One Smart Verification Solution
05/13/2025 | SiemensSiemens Digital Industries Software announced the Questa™ One smart verification software portfolio, combining connectivity, a data driven approach and scalability with AI to push the boundaries of the Integrated Circuit (IC) verification process and make engineering teams more productive.
Beyond the Board: Empowering the Next Generation of Tech Innovators in Electronics
05/13/2025 | Jesse Vaughan -- Column: Beyond the BoardThe electronics industry is at the heart of technological progress, driving innovative advancements that shape our world. Yet, despite the sector's rapid evolution, it faces a looming challenge: attracting and retaining young talent. With an aging workforce and an increasing demand for skilled professionals, the industry must find ways to inspire the next generation of innovators.
The Shaughnessy Report: Solving the Data Package Puzzle
05/12/2025 | Andy Shaughnessy -- Column: The Shaughnessy ReportIf you ask fabricators about their biggest challenges, they’ll often point at PCB designers—the readers of this magazine. Yes, you! Why is it so difficult to create the ideal data package? It’s a fairly straightforward task. But this part of the design process keeps tripping up designers, even those who started in the industry before Pink Floyd split up.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/09/2025 | Andy Shaughnessy, Design007 MagazineTrade show season is wrapping up as we head into summer. Where has the time gone? I hope you all get the chance to take a vacation this year, because I know you’ve earned one. Speaking of which, when was my last vacay? If I can’t remember, it’s probably time for one. It’s been a busy week in electronics, with fallout from the back-and-forth on tariffs taking up most of the oxygen in the room. We have quite an assortment of articles and columns for you in this installment of Must-Reads. See you next time.