Graphene Proves a Perfect Fit for Wearable Devices
December 30, 2015 | University of ManchesterEstimated reading time: 2 minutes
Cheap, flexible, wireless graphene communication devices such as mobile phones and healthcare monitors can be directly printed into clothing and even skin, University of Manchester academics have demonstrated.
In a breakthrough paper in Scientific Reports, the researchers show how graphene could be crucial to wearable electronic applications because it is highly-conductive and ultra-flexible.
The research could pave the way for smart, battery-free healthcare and fitness monitoring, phones, internet-ready devices and chargers to be incorporated into clothing and ‘smart skin’ applications – printed graphene sensors integrated with other 2D materials stuck onto a patient’s skin to monitor temperature, strain and moisture levels.
Examples of communication devices include:
- In a hospital, a patient wears a printed graphene RFID tag on his or her arm. The tag, integrated with other 2D materials, can sense the patient’s body temperature and heartbeat and sends them back to the reader. The medical staff can monitor the patient’s conditions wirelessly, greatly simplifying the patient’s care.
- In a care home, battery-free printed graphene sensors can be printed on elderly peoples' clothes. These sensors could detect and collect elderly people’s health conditions and send them back to the monitoring access points when they are interrogated, enabling remote healthcare and improving quality of life.
Existing materials used in wearable devices are either too expensive, such as silver nanoparticles, or not adequately conductive to have an effect, such as conductive polymers.
Graphene, the world’s thinnest, strongest and most conductive material, is perfect for the wearables market because of its broad range of superlative qualities. Graphene conductive ink can be cheaply mass produced and printed onto various materials, including clothing and paper.
The researchers, led by Dr Zhirun Hu, printed graphene to construct transmission lines and antennas and experimented with these in communication devices, such as mobile and Wifi connectivity.
Using a mannequin, they attached graphene-enabled antennas on each arm. The devices were able to ‘talk’ to each other, effectively creating an on-body communications system.
Page 1 of 2
Suggested Items
Fujifilm to Invest 4 Billion yen in Belgium for CMP Slurries and Photolithography-related Materials
02/07/2025 | FujifilmFUJIFILM Corporation today announced that it will install new production facilities of CMP slurries*1, advanced semiconductor materials, and enhance existing facilities for photolithography-related materials*2 at its production site located in Belgium. In Europe, where demand for automotive semiconductors and industrial semiconductors supporting the DX of manufacturing processes at factories is expected to grow, Fujifilm makes an investment of approximately 4 billion yen (approx. 25 million EUR) to expand the production capacity of its Belgium site, based in Zwijndrecht, Antwerp.
Indium Expert to Address Thermal Challenges at TestConX 2025
02/04/2025 | Indium CorporationIndium Corporation Technical Support Engineer Carson Burt will deliver a technical presentation at TestConX 2025, taking place March 3-5 in Mesa, Arizona.
3M Joins Consortium to Accelerate Semiconductor Technology in the U.S.
02/04/2025 | PR Newswire3M is expanding its commitment to the semiconductor industry by joining the US-JOINT Consortium, a strategic partnership of 12 leading semiconductor suppliers. The consortium drives research and development in next-generation semiconductor advanced packaging and back-end processing technologies anchored by a new cutting-edge facility in Silicon Valley.
Happy’s Tech Talk #37: New Ultra HDI Materials
02/03/2025 | Happy Holden -- Column: Happy’s Tech TalkSome new materials have been introduced in the past year for ultra high density interconnect (UHDI), a convenient title for developing high density technologies. They have received labels like semiconductor-like PCBs (SLPs), redistribution layers (RDL), flip-chip ball grid array (FCBGA), and interposers. The early 2000s saw the creation of these organic substrates for flip-chip IC packaging. The initial construction was composed of a BT core with build-up layers of the Ajinomoto Build-up Film (ABF)
The Future of Electronics Manufacturing in APAC
01/30/2025 | Daniel Schmidt, MKS' ATOTECHThe Asia-Pacific (APAC) region is solidifying its leadership in electronics manufacturing, fueled by significant new investments from global industry leaders. This growth is driven by surging demand for high-performance components in key sectors like AI, autonomous vehicles, and sustainable energy, making strategic innovation in semiconductors and advanced electronics essential. APAC's strong supply chains further enhance its appeal to investors.