NREL Theory Establishes a Path to High-Performance 2D Semiconductor Devices
April 27, 2016 | NRELEstimated reading time: 2 minutes

Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have uncovered a way to overcome a principal obstacle in using two-dimensional (2D) semiconductors in electronic and optoelectronic devices.
2D semiconductors such as molybdenum disulfide are only a few layers thick and are considered promising candidates for next-generation devices. Scientists first must overcome limitations imposed by a large and tunable Schottky barrier between the semiconductor and a metal contact. The barrier, at the metal/semiconductor junction, creates an obstacle for the flow of electrons or holes through the semiconductor.
The NREL team discovered that the height of the Schottky barrier can be adjusted-or even made to vanish-by using certain 2D metals as electrodes. Such adjustments are not possible with conventional three-dimensional metals because of a strong Fermi level pinning (FLP) effect occurring at the junction of metal and semiconductor, due to electronic states in the semiconductor band gap that are induced by the metal. Increasing the flow of electrons or holes through a semiconductor reduces power losses and improves the device performance.
The NREL theorists considered a family of 2D metals that could bind with the 2D semiconductors through van der Waals interaction. Because this interaction is relatively weak, the metal-induced gap states are suppressed and the FLP effect is negligible. This means that the Schottky barrier becomes highly tunable. By selecting an appropriate 2D metal/2D semiconductor pair, one can reduce the barrier to almost zero (such as H-NbS2/WSe2 for hole conduction).
They noted that using a 2D metal as an electrode would also prove useful for integrating into transparent and flexible electronics because the 2D metal is also transparent and flexible. They also noted that the junction of 2D metal and 2D semiconductor is atomically flat and can have fewer defects, which would reduce carrier scattering and recombination.
The work by Yuanyue Liu, Paul Stradins, and Su-Huai Wei, "Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier," appears in the new issue of Science Advances.
The trio of researchers predicts that hexagonal phase of niobium disulfide (NbS2) is the most promising for hole injection into a 2D semiconductor, and heavily nitrogen-doped graphene can enable efficient electron injection.
This research was funded by the Department of Energy's Office of Energy Efficiency and Renewable Energy. The work used computational resources at NREL and the National Energy Research Scientific Computing Center.
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.
Suggested Items
Aismalibar to Attend productronica
11/07/2023 | AismalibarAfter successful participation at productronica 2021, Aismalibar will attend the Munich event on November 14–17, 2023 and showcase its latest developments in IMS laminates, Thermal Interface Materials (TIMs) and a range of automation for production of PCBs from the Technosystem brand.
Material Insight: The Material Science of PCB Thermal Reliability
10/25/2023 | Preeya Kuray -- Column: Material InsightPrinted circuit board (PCB) reliability testing is generally performed by exposing the board to various mechanical, electrical, and/or thermal stimuli delineated by IPC standards, and then evaluating any resulting failure modes. Thermal shock testing is one type of reliability test that involves repeatedly exposing the PCB test board to a 288°C pot of molten solder for a specific time (typically 10 seconds) and measuring the number of cycles it takes for a board’s copper layer to separate from the organic dielectric layer. If there is no delamination, fabricators can rest assured that the board will perform within expected temperature tolerances in the real world.
IPC Releases IPC-6012F, Qualification and Performance Specification for Rigid Printed Boards
10/19/2023 | IPCIPC has released IPC-6012F, Qualification and Performance Specification for Rigid Printed Boards. This document is the base standard for addendums covering military, space, medical, and automotive requirements.
Bowman's New XRF Measurement System Satisfies Need for Multi-Use Flexibility and Precision
10/10/2023 | Bowman XRFQuality departments and contract shops that test many different plated parts need an XRF analyzer with an expansive measurement area, selectable spot sizes, and high levels of both precision - and speed. Bowman's K Series benchtop XRF meets all of these requirements. It has a 12″x 12″ measurable area for parts up to 9″ tall. Selectable spot sizes accommodate a wide range of features; focal distances from .25″ to 3.5″.
Indium Acquires SAFI-Tech to Advance Low-Temperature Soldering Technology
10/03/2023 | Indium CorporationIndium Corporation, an international electronics materials refiner, smelter, manufacturer, and supplier, is proud to announce the acquisition of SAFI-Tech, a metal microcapsule technology innovator specializing in supercooling technology.