-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInventing the Future with SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
All About Flex: Considerations for Impedance Control in Flexible Circuits
August 4, 2016 | Dave Becker, All FlexEstimated reading time: 4 minutes

Impedance can be thought of as a system’s opposition to alternating or pulsing electronic current. The unit of measurement is ohms, the same unit of measurement in a direct current system. However, the components for calculating impedance are much more complex than DC resistance. For a direct current system, the resistance is related to the relative ease with which electrons can flow through the material. Ohm’s law describes a fairly straightforward relationship between current and voltage (V=IR or R=V/I) where R is a constant number for any given material. Impedance is characterized by the equation including the DC resistance but also includes another component called reactance. Reactance is the ability of the system to store and release energy as current or voltage alternates. The equation for impedance is Z=R +iX, where iX is the reactance component. The reactance is a function of the capacitance of the system and the frequency of the alternating or pulsing current.
Why is impedance important?
Impedance is important for high-speed electronics. When frequencies become 200 MHz or higher, the impedance and impedance consistency becomes a significant factor in the system performance. During the last 20 years, electronic packages have become smaller, denser and faster. It is estimated that in 2000, only a small percentage of PCB and flexible printed circuit (FPCB) designs had an impedance requirement. As higher and higher frequencies continue their relentless march, impedance requirements today have become much more prevalent and important.
In a direct current system, when two components of different resistance are connected in series, the system resistance is simply equal to the two components added together (R1 +R2). The flow of the electrons is homogenous. The analogy is a garden hose where the flow of the water is the same throughout the hose.
In high-speed electronics, impedance does NOT behave the same way. High speed signals are like separate pulses propagating through the system. The current and magnetic pulses are affected by the impedance. When the pulses encounter a node of mismatched impedance, a flux of energy is induced which creates competing signals that can interfere with the main signal. The result is power loss and distortion of the signal.
Many nodes of mismatched impedance can occur within a PCB system as attached components, conductor width, conductor spacing and dielectric thicknesses change. One way to deal with this issue is to isolate the signal traces so that the dielectric and geometries are identical throughout the signal path. This is called controlled impedance. In flexible circuits, there are two categories of designs that are typically used for controlled impedance: microstrip and stripline (Figure 1). Within the categories one can have single-ended transmission lines and differential pair transmission lines.
Figure 1: Designs for controlled impedance.
In both designs, the impedance is affected by the following:
- Dielectric constant (Dk) of the materials
- The DC resistance of the signal line
- Distance between the signal lines and ground planes or signal line pairs
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.