-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueFueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
Inner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Continuous Roll-process Technology for Transferring and Packaging Flexible Large-scale Integrated Circuits
September 2, 2016 | KAISTEstimated reading time: 1 minute

A research team led by Professor Keon Jae Lee from the Korea Advanced Institute of Science and Technology (KAIST) and by Dr. Jae-Hyun Kim from the Korea Institute of Machinery and Materials (KIMM) has jointly developed a continuous roll-processing technology that transfers and packages flexible large-scale integrated circuits (LSI), the key element in constructing the computer’s brain such as CPU, on plastics to realize flexible electronics.
Professor Lee previously demonstrated the silicon-based flexible LSIs using 0.18 CMOS (complementary metal-oxide semiconductor) process in 2013 (ACS Nano, “In Vivo Silicon-based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers”) and presented the work in an invited talk of 2015 International Electron Device Meeting (IEDM), the world’s premier semiconductor forum.
Highly productive roll-processing is considered a core technology for accelerating the commercialization of wearable computers using flexible LSI. However, realizing it has been a difficult challenge not only from the roll-based manufacturing perspective but also for creating roll-based packaging for the interconnection of flexible LSI with flexible displays, batteries, and other peripheral devices.
To overcome these challenges, the research team started fabricating NAND flash memories on a silicon wafer using conventional semiconductor processes, and then removed a sacrificial wafer leaving a top hundreds-nanometer-thick circuit layer. Next, they simultaneously transferred and interconnected the ultrathin device on a flexible substrate through the continuous roll-packaging technology using anisotropic conductive film (ACF). The final silicon-based flexible NAND memory successfully demonstrated stable memory operations and interconnections even under severe bending conditions. This roll-based flexible LSI technology can be potentially utilized to produce flexible application processors (AP), high-density memories, and high-speed communication devices for mass manufacture.
Professor Lee said, “Highly productive roll-process was successfully applied to flexible LSIs to continuously transfer and interconnect them onto plastics. For example, we have confirmed the reliable operation of our flexible NAND memory at the circuit level by programming and reading letters in ASCII codes. Out results may open up new opportunities to integrate silicon-based flexible LSIs on plastics with the ACF packing for roll-based manufacturing.”
Dr. Kim added, “We employed the roll-to-plate ACF packaging, which showed outstanding bonding capability for continuous roll-based transfer and excellent flexibility of interconnecting core and peripheral devices. This can be a key process to the new era of flexible computers combining the already developed flexible displays and batteries.”
Suggested Items
Qorix, Qualcomm Cooperate to Drive the Future of Software-Defined Vehicles
02/07/2025 | Qualcomm Technologies, Inc.Qorix, a global provider of modular and integrated automotive middleware solutions, and Qualcomm Technologies, Inc., a leader in automotive platforms, announced a technology cooperation to help drive the future of software-defined vehicles (SDVs) with high performance, pre-integrated and scalable solutions designed to enable OEMs and tier-1 suppliers to develop next generation vehicles quickly and efficiently.
Plasmatreat Korea to Exhibit at SEMICON Korea 2025
02/07/2025 | Plasmatreat KoreaPlasmatreat Korea, specialist in atmospheric pressure plasma technology for surface treatment, is pleased to announce its participation at SEMICON Korea 2025. From February 19 to 21, 2025, visitors will have the opportunity to learn more about Openair-Plasma and PlasmaPlus at booth P126 in the Platz Hall.
New IPC White Paper Focuses on Use of Artificial Intelligence in Automated Optical Inspection in Electronics Manufacturing
02/06/2025 | IPCA new white paper, “Unlocking AI for Automated Optical Inspection” released today by IPC’s Chief Technologist Council, focuses on AI’s role in AOI processes for printed circuit board assemblies (PCBAs). According to data within the white paper, recent advancements in technology, particularly in Cloud AI, IoT and Smart Manufacturing, have provided opportunities to further enhance AOI performance.
Delvitech to Officially Present Hybrid AOI + SPI Horus System at IPC APEX EXPO 2025
02/06/2025 | DelvitechDelvitech is happy to announce that it will showcase its groundbreaking Horus system, the industry's first all-in-one AI native platform for both Automatic Optical Inspection (AOI) and Solder Paste Inspection (SPI), at the upcoming IPC APEX EXPO 2025. The event is scheduled from March 18 to 20, 2025, at the Anaheim Convention Center in Anaheim, California.
Laser Photonics Propels R&D Efforts in Wafer Marking
02/04/2025 | BUSINESS WIRELaser Photonics Corporation, a leading global developer of industrial laser systems for cleaning and other material processing applications, and its recently acquired subsidiary, Control Micro Systems, Inc. (CMS Laser), announced the expansion of their Laser Wafer Marking technology research and development program.