Flexible Ferroelectrics Bring Two Material Worlds Together
January 17, 2017 | Argonne National LaboratoryEstimated reading time: 2 minutes

Until recently, “flexible ferroelectrics” could have been thought of as the same type of oxymoronic phrase. However, thanks to a new discovery by the U.S. Department of Energy’s (DOE) Argonne National Laboratory in collaboration with researchers at Northwestern University, scientists have pioneered a new class of materials with advanced functionalities that moves the idea from the realm of irony into reality.
A scanning electron microscopy image of flexible haloimidazole crystals, which were found to show both ferroelectric and piezoelectric properties. (Image by Seungbum Hong/Argonne National Laboratory.)
Ferroelectrics are a useful type of material that is found in capacitors that are used in sensors, as well as computer memory and RFID cards. Their special properties originate from the fact that they contain charged regions polarized in a specific orientation, which can be controlled with an external electric field. But they’ve also had a big drawback as engineers try to use them in new inventions.
“Ferroelectric materials are known for being quite brittle, and so it has always been a big challenge to make them mechanically flexible,” said Argonne nanoscientist Seungbum Hong, who helped to lead the research. “Because ferroelectricity and this kind of flexibility are relatively rare properties to see on their own, to have both ferroelectricity and flexibility in this new material is basically unprecedented.”
Previous generations of ferroelectric materials were primarily ceramic, Hong said, which made them fairly brittle. In the new material, the crystal planes at the atomic level tend to slip past one another, adding to the material’s ductility.
One advantage of flexible ferroelectrics comes from the fact that all ferroelectric materials are also piezoelectric, which means they can convert an applied mechanical force into an electrical signal, or vice versa; for example, when you flick a lighter to generate a spark. Having more flexible ferroelectrics could enable a greater response from a smaller input.
With flexible ferroelectrics, scientists and engineers may have the opportunity to adapt these materials for a host of new and improved uses, including precision actuators for atomic force microscopy, ultrasonic imaging sensors and emitters for medical applications and even sensors for some automotive applications.
For data storage, the impact may be even greater. “There’s a very large information density potential with ferroelectric storage,” Hong said. “This could make a big difference as we think about future generations of the data cloud.”
An article based on the research, “Flexible ferroelectric organic crystals,” was published online in Nature Communications in October. One of the lead Northwestern authors of the study, Sir Fraser Stoddart, received the 2016 Nobel Prize in Chemistry for his work on molecular machines.
Suggested Items
Technica Expands into Emerging Printed Electronics and Advanced Coatings Markets
06/04/2025 | Technica USATechnica is expanding its product portfolio with Agfa’s advanced line of Orgacon conductive coatings. The Orgacon products are a natural complement to Technica’s existing solutions and will allow the company to deliver greater value to customers in these markets.
Panasonic Appoints Matrix as its Authorized Distributor in Europe
06/03/2025 | Matrix ElectronicsEffective July 1st, 2025, Panasonic Industry Co., Ltd. has appointed Matrix Electronics Limited as its Authorized Distributor in the European region.
Indium Joins Virginia Tech Center for Power Electronics Systems Industry Consortium
06/03/2025 | Indium CorporationIndium Corporation®, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, has joined Virginia Tech’s Center for Power Electronics Systems (CPES), an industry consortium that supports power electronics initiatives to reduce energy use while growing capability.
Strategic Materials Conference 2025 Spotlights Materials Innovation to Advance Semiconductor Manufacturing
06/02/2025 | SEMIWith materials innovation at the core of next-generation semiconductor technologies, the Strategic Materials Conference (SMC) 2025 brings together top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest trends and advancements.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.