-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Microvias: Links of Faith are Not Created Equally
July 18, 2019 | Jerry Magera and J.R. Strickland, Motorola Solutions Inc.Estimated reading time: 5 minutes
Abstract
Microvias connect adjacent copper layers to complete electrical paths. Copper-filled microvias can be stacked to form connections beyond adjacent copper layers. Staggered microvias stitch adjacent copper layers with paths that meander on the layers between the microvias. Both microvia configurations are formed by essentially the same sequential operations of laser drill, metallization, and patterning, using various chemical, mechanical, and thermal treatments to form each layer, one over the other. Stacked microvias must be filled while staggered microvias do not. Process specifics differ from manufacturer to manufacturer.
Stacked microvias fracture during reflow assembly while staggered microvias do not. Assembly reflow subjects the printed wiring board (PWB) to the greatest temperature excursion. Stacked microvias with a weak interface fracture during assembly reflow and are a hidden reliability threat. This phenomenon was reported in IPC-WP-023 [1] in May of 2018. IPC-TM-650 Method 2.6.27A is a performance-based PWB acceptance test that detects fractured microvias. SEM pictures are presented to initiate discussions in the search for the root cause. Included are cross-section images of completed microvia structures, SEMs after laser drill, and after electroless copper. Not all stacked microvias fail. To learn why, microvia samples were collected from different PWB suppliers. Microvias drilled by UV lasers are compared to microvias drilled by other laser configurations. The images show that microvia structure was influenced by laser type. This article discusses the various laser-drilled microvias and presents SEM photographs to begin the search for the root cause of weak copper interface.
Introduction
The search for root cause in this article focuses on laser drill. Not all stacked microvias fail. To learn why, microvia samples drilled by UV lasers were visually compared to microvias drilled by other laser configurations. Samples were extracted after laser drill and after electroless copper. SEM analysis provided high-resolution views for comparison. The SEM pictures revealed that microvia structure was influenced by laser type.
Figure 1: Cross-section of layer 1 to layer 3 staggered copper filled microvia and layer 1 to layer 4 stacked copper filled microvia. Cross-sections were polished and microetched to reveal copper structure.
Figure 1 shows a two-level staggered microvia and a three-level stacked microvia. Both configurations are used in PWBs; however, when both were used on same PWB, the stacked microvia failed during reflow assembly while the staggered microvia did not. The microvias were formed with a UV-CO2 combo laser UV clean followed by desmear, electroless copper, and electrolytic copper fill.
Figure 2: Cross-section of a three-stack microvia failure.
Both stacked and staggered microvias must survive reflow assembly. A cross-section of a failed three-stack microvia shown in Figure 2 revealed a separation between the target pad and plated copper fill at both layers 2 and 4. The microvias were drilled with a UV laser followed by desmear, electroless copper, a copper strike, then copper fill. The UV laser ablation parameter was set to dig into the copper target pad. The UV-drilled microvia failed during reflow assembly.
Figure 3 is SEM photograph of a UV laser-drilled, copper-filled microvia cross-section before assembly reflow. The copper-fill to target pad interface as shown is a complex structure that meanders into the layer 2 plated copper. Arrow (a) points to a UV laser-formed copper burr at the knee of the copper foil. Arrow (b) points to a thin demarcation that follows the copper fill to copper strike interface. Arrow (d) points to the electroless layer between the copper foil and electroplated copper. Arrows (c) and (e) point to interface features that are darker and coarser than the plated copper. The electroplated copper strike to electroless copper to target pad interfaces were obscured by the features created by the UV laser ablation.
Figure 3: UV-only laser-drilled copper-filled microvia: (a) UV-laser-induced burr formed on copper foil; (b) Demarcation between copper fill and copper strike; (c) Feature with different texture compared to the plated copper; (d) Electroless copper layer between copper foil and electroplated copper; (e) Feature with texture different compared to the plated copper.
UV laser-drilled stacked microvias failed reflow assembly more frequently compared to microvias drilled by other laser types. The difference was related to the UV laser created features present between the copper fill and target pad as shown in Figure 3. The features, only observed in UV laser-drilled microvias formed as copper melted and recast in the presence of air, coincide with the weak points that fracture when thermally stressed during reflow assembly. The rest of this article presents SEM photographs of microvias after laser drill and after electroless copper to show the condition of the copper surface of the target pad produced by the commonly practiced laser processes.
Results and Discussion
The PWB manufacturing base uses different laser types, plating chemistries, and laminate materials in the manufacture of PWBs with microvias. A reliable stacked microvia depends on the condition of the target pad after the laser process. Laser drilling is the accepted method of forming microvias. UV Nd:YAG and CO2 lasers were developed to drill microvias and are commercially available in four different configurations to the PWB industry.
1. UV Nd:YAG Laser
The UV laser can micro-machine a variety of materials, including copper and glass-reinforced dielectric laminate to produce unique features. The ability to ablate copper can potentially damage copper surfaces, such as the target pad of a microvia. SEM photographs of target pads touched by the UV beam show evidence of melted copper and copper particles that were explosively ejected from the melted copper surface. Copper flow patterns were visible on the target pad along with porosity and inclusions that were characteristic of the sputtering and recasting of molten copper. Molten copper flow patterns were visible over the surface of the target pad and the rim of the outer layer copper foil surrounding the microvia opening—basically any copper surface the UV beam contacted. Constructions require surface copper thickness thinner than target copper thickness to prevent the UV beam from piercing the target pad copper. In most constructions, UV copper ablation requires entry copper to be less than 0.5-oz. copper weight.
To read the full article, which appeared in the July 2019 issue of PCB007 Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.