-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Contact Columnist Form
Electromagnetic Fields, Part 2: How They Impact Propagation Speed
In my August 2013 column, I suggested that thinking in terms of what the electromagnetic field looks like around our traces might offer significant insight into how our circuits might be performing. In that column, I pointed out that the electromagnetic field had more to do with trace impedance than the specific trace dimensions did. That is, a trace can be “scaled” without changing the impedance (or the shape of the field.) But if the field distribution changes, then the impedance will change.
In this column, I am going to make similar observations about signal propagation speed. Recall that electronic signals travel at the speed of light, or 186,282 miles per second. This equates to 11.8 inches/ns (or what we sometimes round off to a foot per nanosecond.) In any other material, the speed of light slows down. It slows down by the square root of the relative dielectric coefficient, Equation 1.
Equation 1
Consider the situation shown in Figure 1. This is derived from a HyperLynx simulation. Here we have a trace in a stripline environment, surrounded by a dielectric. If we assume the relative dielectric coefficient of the dielectric is 4.0, then the propagation speed of the signal will be 11.8/2 = 5.9 in/ns (we sometimes round this off to 6”/ns.) Note the electromagnetic field in this figure. It is completely contained within the dielectric between the two planes on either side of the trace.
Read the full column here.
Editor's Note: This column originally appear
More Columns from Brooks' Bits
Brooks' Bits: Internal Trace Temperatures—More Complicated Than You ThinkBrooks' Bits: Electromagnetic Fields, Part 3 - How They Impact Coupling
Brooks' Bits: Electromagnetic Fields, Part 2: How They Impact Propagation Speed
Brooks' Bits: How Electromagnetic Fields Determine Impedance, Part 1
Trace Currents and Temperature, Part 4: Via Heat
Trace Currents and Temperature, Part 3: Fusing Currents
Trace Currents and Temperature, Part 1: The Basic Model
The Skinny on Skin Effect, Part 3: Crossover Frequency