-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueSales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
The Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Being Flexible in a Rigid World
May 21, 2015 | Michael Carano, RPB Chemical TechnologyEstimated reading time: 3 minutes

With double-digit growth in the foreseeable future, flexible printed circuits (FPC), have found a tremendous niche as an enabler for various electronic applications. This trend is expected to drive the need to increase productivity while improving performance and reducing costs. Of course, in order to sell FPC, one must tackle the unenviable task of metalizing these often difficult-to-plate materials. In particular, the deposition of metal on a polyimide film is discussed. When discussing adhesion of a deposited metal to a substrate, one must focus on two distinct but related processes. The first relates to surface preparation conditioning and the second to the deposition of the metal itself.
Preparing the Polyimide Surface
One common theme that electroplaters often here is surface preparation. Materials such as polyimide are prone to low copper adhesion. To mitigate this situation, specially formulated conditioners are employed to provide a surface that is conducive to adhesion. Any surface that one desires to deposit another coating on requires that surface to be activated. Otherwise, defects (Figure 1) are often found. Generally these defects include:
- Blistering
- Peeling
- Voids
One critical step in the process sequence is to utilize a conditioning agent (prior to electroless copper metallization) that makes the polyimide material more susceptible to adhesion of the palladium catalyst. In turn, the conditioning agent enhances the adhesion of the subsequently plated copper to the polyimide.
As is often the case, electroless copper plating process systems include a second conditioning step after polyimide etch. While this author recommends such a step, it is with reservation. Basically, the second conditioning step must contain materials that are free rinsing so as to not leave a film on the polyimide. Such a film may lead to a barrier that reduces adhesion of the copper deposit. Should such a situation arise, the fabricator would be better served to run a performance test with no extra conditioner, one with 50% of the recommended concentration, and one test with the full recommendation. Then after plating, perform a tape test to quantify the adhesion, or lack thereof.
Electroless Copper Deposition
The importance of the conditioning step not withstanding, total success is not achievable without a low stress electroless copper deposit. Typically, deposited metals exhibiting a high degree of internal stress find it necessary to “pullaway” from the substrate in order to relieve the stress condition.
The literature reviews and basic research studies provide evidence that the grain structure of the copper deposit influences the deposit’s adhesion to the copper interconnect.
Microsections taken from test boards processed in different electroless copper process formulations show vastly varying structures. As shown in Figure 2, the structure is one that is considered a finely grained crystal structure that appeared “loose.” From multiple testing programs, this type of structure was more prone to hole wall pullaway and over all poor adhesion.
In Figure 3, the structure shown has a high correlation to good interconnect reliability, as determined by IST and thermal shock testing. In addition, this type of deposit structure exhibited very low stress and provides excellent adhesion when subjected to tape testing. It is highly recommended that for flex circuit applications, especially dynamic flex, maximum adhesion of the copper to the substrate be achieved. Further, the data supports the assertion that a low- to medium-deposition electroless copper process be employed for flexible circuit manufacturing. These types of electroless copper processes typically provide a low stress deposit with a fairly large grain structure.
This is not to say that direct metallization processes are not compatible to flex circuit fabrication. On the contrary, direct metalization is very proficient with respect to flex and will be reviewed in a future post.
About the Author:
Michael Carano is with RPB Chemical Technology. He has been involved in the PWB, general metal finishing photovoltaic industries for nearly 30 years and is currently co-chair of the IPC Technology Roadmap Executive Committee. Carano holds nine U.S. patents in topics including plating, metallization processes and PWB fabrication techniques. He was inducted into the IPC Hall of Fame in 2014 and has been a regular contributor to various industry publications throughout his career.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.