-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
The Application of Advanced Ultrasonics in Metal Plating Processes
October 12, 2015 | Stuart Dalrymple, C-Tech InnovationEstimated reading time: 3 minutes
Most surface modification chemical treatments by their very nature contain hazardous and oxidising chemicals; there is a major concern that these chemicals are used maliciously with the intent to manufacture explosives or formulate poisons to harm the public. Cyanide-based plating solutions and high concentrations of hydrogen peroxide used in current techniques are a significant use of these materials in industry.
The use of cyanide and hydrogen peroxide is concentrated in a few industries: large polymer manufacturers, chemical manufacturers, and surface finishing companies. Surface finishing/PCB manufacturing is a particular risk as in general the sites where these processes are run are small, distributed and less secure than large chemical plants. Consequently, amounts of these dangerous substances are found across the UK with varying and sometimes limited control over their use, representing a significant risk.
Barriers to implementation of cyanide-free plating solutions are related to quality of product and operational requirements. Introduction of the novel ultrasound technology can overcome these barriers, but must be validated on full scale processes and over a range of plating systems.
The introduction of ultrasound to current industrial protocols has been demonstrated in the first phase of the Reprime project to allow the removal of cyanide from metal plating processes, and significantly reduce the amount of hydrogen peroxide use. A small test plating line was set up featuring an ultrasound tank in which barrel plating, vat plating or PCB etching could be performed.
Figure 1: Ultrasound reactor showing ultrasound transducers (left) and barrel plating (right).
Results from zinc plating trials on fixings, showed that cyanide free solutions could be improved in terms of the weight addition and the coverage consistency with appropriate application of ultrasound. The technique particularly aids coverage when used on unusual shapes and through holes which are typically problematic with cyanide free solutions.
Figure 2: Improved plating rate on hex-nuts in acid based zinc plating solutions when ultrasound is applied.
Ultrasound was shown to reduce the levels of hydrogen peroxide required in etchant solutions used in PCB manufacturing. However, the biggest improvements were seen when considering bath life. Baths treated with a particular configuration of ultrasound could perform for significantly longer timescales without performance degradation. Therefore, bath chemistry can be replenished at a less frequent rate, reducing chemical use and handling requirements.
Figure 3: PCB test materials untreated (left) and treated (right) with a hydrogen peroxide based etchant.
To go beyond the current process development and achieve impact in industry, the scope of work must be increased to test at an industrially relevant scale and to broaden the range of processes covered. Work is currently focussed on making cyanide free technology more attractive on performance grounds to overcome barriers to implementation. Overall aims of the project are as follows:
- Demonstrate that zinc plating can be achieved at a scale relevant to industrial systems
- Ensure technology can be easily used with existing equipment
- Extend plating trials to other cyanide plating systems such as copper, gold and silver to cover the bulk of the industrial processes
- Carry out hydrogen peroxide etch at full PCB manufacturing scale and prolonged bath life trials
- Work with industry bodies such as the Surface Engineering Association (SEA) and ICT (institute of Circuit Technology) to engage and inform industry
There is huge potential for this technology to make a positive impact on the reduction of dangerous chemicals with over 1000 factories in the UK operating surface finishing or PCB manufacturing processes. The output from these industries are cross-sectoral, including vast markets within the automotive, aerospace, and electronics sectors. It is hoped that through this research work, a viable technical solution can be applied through this industry.
Stuart Dalrymple is a project manager at C-Tech Innovation with experience running research projects in the areas of process engineering, surface finishing and environmental assessment.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Trump Copper Tariffs Spark Concern
07/10/2025 | I-Connect007 Editorial TeamPresident Donald Trump stated on July 8 that he plans to impose a 50% tariff on copper imports, sparking concern in a global industry whose output is critical to electric vehicles, military hardware, semiconductors, and a wide range of consumer goods. According to Yahoo Finance, copper futures climbed over 2% following tariff confirmation.
Happy’s Tech Talk #40: Factors in PTH Reliability—Hole Voids
07/09/2025 | Happy Holden -- Column: Happy’s Tech TalkWhen we consider via reliability, the major contributing factors are typically processing deviations. These can be subtle and not always visible. One particularly insightful column was by Mike Carano, “Causes of Plating Voids, Pre-electroless Copper,” where he outlined some of the possible causes of hole defects for both plated through-hole (PTH) and blind vias.
Trouble in Your Tank: Can You Drill the Perfect Hole?
07/07/2025 | Michael Carano -- Column: Trouble in Your TankIn the movie “Friday Night Lights,” the head football coach (played by Billy Bob Thornton) addresses his high school football team on a hot day in August in West Texas. He asks his players one question: “Can you be perfect?” That is an interesting question, in football and the printed circuit board fabrication world, where being perfect is somewhat elusive. When it comes to mechanical drilling and via formation, can you drill the perfect hole time after time?