-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Gold Embrittlement Mitigation: Understanding the New J-STD-001 Requirements
October 20, 2015 | Bob Wettermann, BEST Inc.Estimated reading time: 2 minutes

A significant change to the soldering assembly specifications is outlined in the recently released "F" version of the J-STD-001, Requirements for Soldered Electrical and Electronic Assemblies (July 2014) for gold-plated components. With the advent of more information from studies on the behavior of how much gold can impact the mechanical structure of the solder joint, the "washing away" of gold has become more important.
Gold is widely used in electronic package finish designs in order to enhance solderability and wire bondability. A thick, pure gold finish can be used to enhance wire bondability, but can be too thick for soldering, causing solder joint embrittlement. It does not oxidize very readily, melts at relatively low temperature, and dissolves rapidly in the soldering process. However, too much remnant gold in the solder joint can weaken the integrity of the interconnection.
If the gold dissolution is excessive during the solder alloy’s liquid phase formation, then the composition, mechanical properties and durability of the resulting joint alloy can change, compared with the original solder alloy. As the finished electronic assemblies heat up and cool down, or when exposed to stresses, the gold in the solder joint can weaken or embrittle it and fail. Given the above understandings, solder joint embrittlement is defined as a change of solder joint durability due to dissolution and/or reaction with a finish such as gold and/or palladium.
The changes are expressed in tin-based solders by the appearance of AuSn4 intermetallic compounds from gold finishes. The compounds can occur in the bulk of the solder joint, at the finish interface or in both locations. The compounds are brittle in comparison with the soft solder alloy. As a result, the ability of the joint to be robust when subjected to mechanical strains is reduced.
Limiting these localized weaknesses and maintaining a reliable solder joint is the reason, along with the corresponding testing to verify this, behind the J-STD specification change.
Changes in the J-STD-001 Specification
With the advent of the new version of IPC JSTD-001, the governing the assembly of printed circuit boards, changes to the procurement and preparation of gold plated parts for the military and aerospace markets has taken a new turn.
The following significant changes were made to the specification:
1. Gold embrittlement mitigation (gold washing), which when not done, was a process indicator for class 2 assemblies in "E" is now a defect if NOT done in "F"
2. All through-hole leads required to be hand-soldered regardless of gold thickness need to be "washed" (and hence are a reliability concern
3. A new warning that gold embrittled solder terminations can be present when the solder volume is low (i.e., very small components) or when the dwell time is not sufficient in the soldering process
Editor's Note: This article originally appeared in the October 2015 issue of SMT Magazine.
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.