-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
All About Flex: High-Temperature Performance Flexible Circuits
January 21, 2016 | Dave Becker, All FlexEstimated reading time: 2 minutes

Markets requiring thermal exposure at elevated temperatures include down-hole oil drilling, semiconductor processing, medical diagnostics and a multitude of military/aerospace requirements. But a limitation of flexible circuitry has been performance at extremely high temperatures. For purposes of this discussion, the definition of “extremely high” is temperatures that exceed 150–200°C on a continuous basis or 288°C on an intermittent basis[1]. The flexible circuit industry has made inroads improving this product feature with recent developments and significantly improved high-temperature performance, which is being accomplished with new material constructions requiring some unique fabrication processing.
The adhesive system used to bond the various layers in a flexible circuit is normally considered the weakest link when parts are exposed to high temperature or a harsh chemical environment. This weakness has driven adoption of adhesiveless base laminate technology (the word “laminate” remains an industry term but is a bit misguiding when describing adhesiveless structures as they are not generally produced with a laminating process). Multiple methods for creating an adhesiveless base laminate substrates have become common (copper sputtering, vacuum deposition, cast polyimide) and provide improved performance in both extreme thermal and chemical environments.
But the most frequently used “top side” flexible circuit insulation is generally another layer of polyimide film commonly called coverlay or coverfilm. This layer of film is coated with an uncured adhesive and positioned onto the etched circuitry pattern and then permanently fastened during a temperature/pressure lamination cycle in a platen press. Consequently, an adhesive has been reintroduced into the circuit composite, despite removing the adhesive in the base substrate. Another top side dielectric used in the world of flexible printed circuits is a photo-imaged soldermask, but this material often becomes brittle at elevated temperatures, and can fracture or flake off when bent or folded.
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.
Indium to Showcase High-Reliability Solder and Flux-Cored Wire Solutions at SMTA International
10/09/2025 | Indium CorporationAs one of the leading materials providers in the electronics industry, Indium Corporation® will feature its innovative, high-reliability solder and flux-cored wire products at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
‘Create your Connections’ – Rehm at productronica 2025 in Munich
10/08/2025 | Rehm Thermal SystemsThe electronics industry is undergoing dynamic transformation: smart production lines, sustainability, artificial intelligence, and sensor technologies dominate current discussions.
Amplifying Innovation: New Podcast Series Spotlights Electronics Industry Leaders
10/08/2025 | I-Connect007In the debut episode, “Building Reliability: KOKI’s Approach to Solder Joint Challenges,” host Marcy LaRont speaks with Shantanu Joshi, Head of Customer Solutions and Operational Excellence at KOKI Solder America. They explore how advanced materials, such as crack-free fluxes and zero-flux-residue solder pastes, are addressing issues like voiding, heat dissipation, and solder joint reliability in demanding applications, where failure can result in costly repairs or even catastrophic loss.