-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueRules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
Partial HDI
Our expert contributors provide a complete, detailed view of partial HDI this month. Most experienced PCB designers can start using this approach right away, but you need to know these tips, tricks and techniques first.
Silicon to Systems: From Soup to Nuts
This month, we asked our expert contributors to weigh in on silicon to systems—what it means to PCB designers and design engineers, EDA companies, and the rest of the PCB supply chain... from soup to nuts.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
True DFM: Taking Control of Your EDA Tool
February 1, 2017 | Kelly Dack, CID+Estimated reading time: 3 minutes
We PCB designers are doing some truly great things with our layout tools. But we must remember that these tools are so powerful that they will sometimes allow us to design things that can’t be manufactured! We must collaborate with our fabricator and assembly brethren and embrace the best DFM practices, or face the consequences downstream.
Something as seemingly simple as copper-to-edge spacing provides us with plenty of examples of DFM techniques, potentially good and bad.
Providing a sufficient amount of copper-to-edge spacing allows for the least costly manufacturing processes at the PCB fabrication and assembly levels. Extremely tight manufacturing etching and routing tolerances enable the close registration of copper to the cut board edge. On very tight layouts, we see a router profile that is intended to come within .007” of a copper trace. You may have seen closer—and even cases where the copper is designed to extend beyond the the board edge effectively wrapping around the board edge.
Granted, sometimes we designers intend for the copper to exist in close proximity to a board edge profile. When close copper-to-edge distance is intended, we ought to always be sure that the copper will end up protected with a coating of resin (if still laminated within the PCB) or plated with a surface finish in order to prevent oxidation or other forms of contamination.
While copper print and etch factors are more accurate than ever, and your PCB layout tool will allow you place that copper trace very close to that board edge, stop and wait a minute. Think about how this PCB will be fabricated and assembled.
If you don’t know, set up a meeting with your PCB fabricator and assembler. Ask your manufacturing representatives about their capabilities and processes. Take note, though, with regard to the context of this conversation. If you ask how close you can design copper to the board edge, you will (and should) get an entirely different response than if you were to ask how far away should you keep your copper from the board edge. Here’s why:
A PCB board fabricator is in the business of creating very fine images out of copper that will be matched with a drill pattern and registered very accuratly onto a board outline. If this is accomplished as a one-up PCB intended for manual assembly, there are few problems if the PCB is designed such that the copper-to-edge spacing comes within .010” (0.25 mm) or greater. But this scenario can plant the seed of failure if the board design is destined for automated assembly.
After a prototype PCB layout is blessed by the engineering team, the determination is made to get on with production. This is when the lightning bolt of manufacturing reality is set to strike. While the PCB fabricator has done his best to accurately route the board edge very close to the copper conductors as designed, this awsome capability has tied the hands of the assembly provider who may be under contract to build thousands of these PCBs. You see, a prototype fabricator’s working panel can cut very close to the copper when building one-ups that will be shipped as single PCBs. But a PCB going to volume production must be designed to be included into an assembly array. There will be extra features which the assembly provider’s engineers will be adding to allow for ease of de-paneling or excising the boards from the array. These features all require varying amounts of space relative to the PCB edge.
To read this entire article, which appeared in the January 2017 issue of The PCB Design Magazine, click here.
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.