Textile-Based Wearable Electronics and Fashion Displays
March 3, 2017 | KAISTEstimated reading time: 2 minutes
Articles such as clothes, watches, shoes, and accessories are essential to people around the world. However, going beyond the basic roles and purposes of these items, the concept of “wearability” is rapidly evolving to include computing power and the ability to connect to the internet. In other words, information, communication, and technology (ICT) are beginning to be integrated into wearables.
Because wearable electronics can provide a more comfortable and convenient life for wearers, research on and the development of wearables have emerged as major interests both academically and industrially. In particular, a wearable information display for intuitive communication between wearers and wearable devices has attracted a great deal of attention, and it can create additional value in the fashion, military, automobile, and architecture industries while also making functional wearable devices available to all.
Wearable displays have begun to change from rigid and stiff to flexible and pliable to enable more ergonomic designs. It is crucial to preserve the intrinsic flexibility of clothes when adding electronic functions to fabrics and fibers. In this condition, organic light-emitting diodes (OLEDs) are a promising candidate for wearable displays. OLEDs have superb merits, such as thinness, flexibility, light weight, and even transparency. However, it is difficult to integrate operable OLEDs into textiles due to their typically extremely rough surfaces and wavy shapes.
A research team led by Prof. Kyung Cheol Choi of the School of Electrical Engineering at the Korea Advanced Institute of Science and Technology (KAIST), in collaboration with KOLON Glotech, Inc., a Korean outdoor clothing company, succeeded in developing clothing-based light-emitting devices using OLEDs.
The KAIST team demonstrated two types of devices, reliable fabric-based OLEDs and high-luminance fiber-based polymer light-emitting diodes (PLEDs). The fabric-based OLEDs, encapsulated by flexible and transparent multilayer barrier films, were designed for long-term reliability, with measured operational lifetimes exceeding 1,000 hours under the conditions of 30°C and 90% relative humidity. The team successfully operated the OLEDs on rough fabrics through the thermal lamination of thin planarization sheets, later verifying the stable operation of these devices by means of cyclic bending tests.
The fiber-based PLEDs were realized using a simple dip-coating method to coat polymer layers concentrically onto fibers. First, the research team dip-coated a conducting polymer, PEDOT:PSS, several times, with the layers then functioning as planarization layers as well as electrodes. The resulting device showed high luminance exceeding 1,000 cd/m2, a level sufficiently high for everyday applications.
Professor Choi said, “Our research will become a core technology in the development of light-emitting diodes on textiles, which are fundamental elements of fabrics. Hopefully, we can lower the barrier of wearable displays to enter the market.” A researcher on the team also added, “This technology will accelerate the commercialization of fiber-based wearable displays because it offers low-cost mass production using roll-to-roll processing, a type of technology applied to create electronic devices on a roll of flexible plastic or metal foil.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
DARPA, State of New Mexico Establish Framework to Advance Quantum Computing
09/08/2025 | DARPAAs part of the Quantum Benchmarking Initiative (QBI), DARPA signed an agreement with the State of New Mexico’s Economic Development Department to create the Quantum Frontier Project.