-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueWhat's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
Moving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Vapor Degreasing Chemistries to Remove Difficult Lead-Free and No-Clean Fluxes from PCBs
May 26, 2017 | Venesia Hurtubise, Elizabeth Norwood, Wells Cunningham, and Laura LaPlante, MicroCare Corp.Estimated reading time: 7 minutes
Figure 2: Integrated circuit on a substrate.
Further regulation restrictions have also forced electronics manufacturers to reduce or remove leaded ingredients from solder; this has forced solder and flux manufacturers to reformulate to accommodate higher melting-point metals. These high-temperature soldering jobs often leave burned flux residues, which are more difficult to clean. Although the aqueous cleaning industry has been the superior cleaning guru for the past 10 years, these new soldering hurdles have shed light on the limitations of water. The surfactant formulations are continuously advanced to assist in removing these difficult residues, however, the high surface tension of water still restricts rinsing capability. If the surface tension of the mixture manages to allow for cleaning under the low-standoff circuitry, it is unlikely that the deionized water will penetrate the same areas to remove the residing surfactants. Other factors to improve cleaning include operating temperature, chemistry concentrations, rinse cycles, water purity and spray/wash mechanisms. With all of these different elements, it is easy to be overwhelmed with numerous options that provide less than ideal cleaning. Electronics manufacturers who have considered solvent cleaners have also been met with shortcomings; ionic removal is a difficult task for many hydrofluorocarbon-based solvents due to their lack of polarity. However, new solvent and co-solvent formulations coming to the market have proven capabilities at removing ionic contamination and cutting through burned-on residues. Most importantly, these advanced solvent formulations offer new benefits to solvent-cleaning without the need for new equipment.
Manufacturers who are currently using a vapor degreasing process but looking for new solvents to improve cleaning will be able to do so without additional capital investment in equipment.
Vapor Degreasing
The original concept of vapor degreasing revolved around vapor-only cleaning; however, modern vapor degreasers have been modified to allow for liquid immersion in addition to vapor cleaning. This has further improved the ability for solvent to penetrate intricate geometries and solubilize difficult soils. Many modern machines are equipped with two immersion tanks for cleaning: the “boil sump,” which contains the heating elements to produce the vapor zone, and the “rinse sump,” which collects the clean distillate. These machines function, essentially, as industrial stills; the liquid is boiled in the boil sump, condensed in the vapor zone, and then collected in the rinse sump as pure solvent. This means that even as contamination is introduced into the machine during the cleaning process, clean solvent is continuously distilled into the rinse sump, allowing for the contamination to stay trapped in the boil sump. Modern equipment also benefits from improved cold traps, which restrict solvent emissions and improve the distillation process. Figure 3 illustrates the design of a modern two-sump vapor degreaser with two sets of cooling coils.
Figure 3: Modern two-sump vapor degreaser.
The cleaning process in a vapor degreaser typically requires only minutes to complete. Although cycle times vary based on part geometry and soil difficulty, most cleaning cycles require less than 15 minutes to completely clean and dry a rack of parts. Cleaning a circuit board can take place in either one or multiple immersion sumps, depending on the difficulty of the flux residue. For RMA and rosin-based fluxes, cleaning can typically occur in the vapor zone and rinse sump only. Difficult no-clean and high-melt-point fluxes may require immersion in both the boil sump and the rinse sump. The boil sump is very important to the cleaning process, as the hot solvent can provide better solubilizing properties. Additionally, as flux residues begin to accumulate in the boil sump, the dissolved residues actually help the solubility; in the cleaning industry, it is well known that “like dissolves like”.
Page 2 of 3
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.