-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Vapor Degreasing Chemistries to Remove Difficult Lead-Free and No-Clean Fluxes from PCBs
May 26, 2017 | Venesia Hurtubise, Elizabeth Norwood, Wells Cunningham, and Laura LaPlante, MicroCare Corp.Estimated reading time: 7 minutes
Figure 2: Integrated circuit on a substrate.
Further regulation restrictions have also forced electronics manufacturers to reduce or remove leaded ingredients from solder; this has forced solder and flux manufacturers to reformulate to accommodate higher melting-point metals. These high-temperature soldering jobs often leave burned flux residues, which are more difficult to clean. Although the aqueous cleaning industry has been the superior cleaning guru for the past 10 years, these new soldering hurdles have shed light on the limitations of water. The surfactant formulations are continuously advanced to assist in removing these difficult residues, however, the high surface tension of water still restricts rinsing capability. If the surface tension of the mixture manages to allow for cleaning under the low-standoff circuitry, it is unlikely that the deionized water will penetrate the same areas to remove the residing surfactants. Other factors to improve cleaning include operating temperature, chemistry concentrations, rinse cycles, water purity and spray/wash mechanisms. With all of these different elements, it is easy to be overwhelmed with numerous options that provide less than ideal cleaning. Electronics manufacturers who have considered solvent cleaners have also been met with shortcomings; ionic removal is a difficult task for many hydrofluorocarbon-based solvents due to their lack of polarity. However, new solvent and co-solvent formulations coming to the market have proven capabilities at removing ionic contamination and cutting through burned-on residues. Most importantly, these advanced solvent formulations offer new benefits to solvent-cleaning without the need for new equipment.
Manufacturers who are currently using a vapor degreasing process but looking for new solvents to improve cleaning will be able to do so without additional capital investment in equipment.
Vapor Degreasing
The original concept of vapor degreasing revolved around vapor-only cleaning; however, modern vapor degreasers have been modified to allow for liquid immersion in addition to vapor cleaning. This has further improved the ability for solvent to penetrate intricate geometries and solubilize difficult soils. Many modern machines are equipped with two immersion tanks for cleaning: the “boil sump,” which contains the heating elements to produce the vapor zone, and the “rinse sump,” which collects the clean distillate. These machines function, essentially, as industrial stills; the liquid is boiled in the boil sump, condensed in the vapor zone, and then collected in the rinse sump as pure solvent. This means that even as contamination is introduced into the machine during the cleaning process, clean solvent is continuously distilled into the rinse sump, allowing for the contamination to stay trapped in the boil sump. Modern equipment also benefits from improved cold traps, which restrict solvent emissions and improve the distillation process. Figure 3 illustrates the design of a modern two-sump vapor degreaser with two sets of cooling coils.
Figure 3: Modern two-sump vapor degreaser.
The cleaning process in a vapor degreaser typically requires only minutes to complete. Although cycle times vary based on part geometry and soil difficulty, most cleaning cycles require less than 15 minutes to completely clean and dry a rack of parts. Cleaning a circuit board can take place in either one or multiple immersion sumps, depending on the difficulty of the flux residue. For RMA and rosin-based fluxes, cleaning can typically occur in the vapor zone and rinse sump only. Difficult no-clean and high-melt-point fluxes may require immersion in both the boil sump and the rinse sump. The boil sump is very important to the cleaning process, as the hot solvent can provide better solubilizing properties. Additionally, as flux residues begin to accumulate in the boil sump, the dissolved residues actually help the solubility; in the cleaning industry, it is well known that “like dissolves like”.
Page 2 of 3
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
SolderKing Achieves the Prestigious King’s Award for Enterprise in International Trade
05/06/2025 | SolderKingSolderKing Assembly Materials Ltd, a leading British manufacturer of high-performance soldering materials and consumables, has been honoured with a King’s Award for Enterprise, one of the UK’s most respected business honours.
Knocking Down the Bone Pile: Gold Mitigation for Class 2 Electronics
05/07/2025 | Nash Bell -- Column: Knocking Down the Bone PileIn electronic assemblies, the integrity of connections between components is paramount for ensuring reliability and performance. Gold embrittlement and dissolution are two critical phenomena that can compromise this integrity. Gold embrittlement occurs when gold diffuses into solder joints or alloys, resulting in mechanical brittleness and an increased susceptibility to cracking. Conversely, gold dissolution involves the melting away of gold into solder or metal matrices, potentially altering the electrical and mechanical properties of the joint.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
BEST Inc. Reports Record Demand for EZReball BGA Reballing Process
05/01/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce they are experiencing record demand for their EZReball™ BGA reballing process which greatly simplifies the reballing of ball grid array (BGA) and chip scale package (CSP) devices.