-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
2D X-ray Inspection With Materials and Thickness Identification
June 7, 2017 | Paul D. Scott, Ph.D., IBEX Innovations, and Evstatin Krastev, Ph.D., P.E., Nordson DageEstimated reading time: 7 minutes
Figure 2: Materials curves (left) generated from training the system on the wedge samples (right).
MACHINE LEARNING/USER INTERFACE
Machine learning algorithms have been developed to enable decisions to be made on material type and thickness based on the materials space plots generated from the image obtained using the MAP. The algorithms require training using a set of training standards. Once the training stage is complete, the algorithm is able to identify the material and thickness of previously unseen samples. Under ideal test conditions, the algorithm has been shown to have a misclassification rate of less than 2% and is able to identify thickness to better than 1% of the true value.
Once the MAP has been fitted to the CMOS detector, the calibration, database training and sample analysis are handled by a simple user interface which is integrated into the X-ray inspection system software. An example is shown in Figure 3, where wedges of three materials are trained and used to identify the material types on the right of the image.
Figure 3: Screen shots showing a user interface which is designed to allow materials training (top) and identification (bottom).
The algorithm works at a rate compatible with image acquisition times and generates a standard grey-scale image as part of the process.
EXAMPLE APPLICATIONS
This article is focused on discussing the X-ray MAP inspection technology for the electronics industry, including PCBs and semiconductor applications. In this section, we show some examples of the MAP X-ray inspection technology applied in the security and food industries. The intention is to enhance the reader’s understanding of the technology and to facilitate the generation of ideas and requirements that can apply for the electronics industry.
Security Inspection
Security threats may be disguised within everyday objects such as laptops and mobile telephones, which are legitimately carried. X-ray security scanners typically use measurements taken at two voltage settings of the X-ray generator in order to generate materials information. This approach requires two scans. Using the MAP, the measurement can be reduced to a single scan at only one voltage setting.
A desk telephone, shown in Figure 4, was measured as an example of a complex object containing electronic circuitry and plastics. Data were collected at 120 kV, 0.5 mA, with a 0.5 s exposure, using a conventional, low-power tungsten X-ray source and a silicon flat-panel detector equipped with the MAP technology. Analysis of the image data leads to the materials discrimination image shown in Figure 4 (right). The color-scheme here is one typically used in security applications: plastics and other organic materials are presented in orange; so called poor metals, such as aluminum, are shown in green; denser metals are shown in blue.
Figure 4: (Left) Absorption contrast image of a telephone. (Right) Materials contrast image showing plastics (orange), poor metals (green) and dense metals (blue).
We see the potential for the same techniques to be applied in PCB inspection to highlight inconsistencies in circuit boards and other electronic components.
To read the full version of this article, which appeared in the June 2017 issue of SMT Magazine, click here.
Page 2 of 2Suggested Items
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
Breaking Silos with Intelligence: Connectivity of Component-level Data Across the SMT Line
06/09/2025 | Dr. Eyal Weiss, CybordAs the complexity and demands of electronics manufacturing continue to rise, the smart factory is no longer a distant vision; it has become a necessity. While machine connectivity and line-level data integration have gained traction in recent years, one of the most overlooked opportunities lies in the component itself. Specifically, in the data captured just milliseconds before a component is placed onto the PCB, which often goes unexamined and is permanently lost once reflow begins.
BEST Inc. Introduces StikNPeel Rework Stencil for Fast, Simple and Reliable Solder Paste Printing
06/02/2025 | BEST Inc.BEST Inc., a leader in electronic component rework services, training, and products is pleased to introduce StikNPeel™ rework stencils. This innovative product is designed for printing solder paste for placement of gull wing devices such as quad flat packs (QFPs) or bottom terminated components.
See TopLine’s Next Gen Braided Solder Column Technology at SPACE TECH EXPO 2025
05/28/2025 | TopLineAerospace and Defense applications in demanding environments have a solution now in TopLine’s Braided Solder Columns, which can withstand the rigors of deep space cold and cryogenic environments.
INEMI Interim Report: Interconnection Modeling and Simulation Results for Low-Temp Materials in First-Level Interconnect
05/30/2025 | iNEMIOne of the greatest challenges of integrating different types of silicon, memory, and other extended processing units (XPUs) in a single package is in attaching these various types of chips in a reliable way.