-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueSpotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
What's Your Sweet Spot?
Are you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche. What are their insights?
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Tracing the Light Inside LEDs Higher Efficiency
September 14, 2017 | University of TwenteEstimated reading time: 2 minutes

White LEDs can be made even more efficient and powerful, photonics researchers of the University of Twente and Philips Lighting now prove. They found a detailed way for describing the light that stays inside the LED by absorption and scattering. This is very valuable information for the design process.
From relatively weak light sources to strong lights at home and in cars, for example : since the blue and white LED were invented, we’ve seen a rapid development in possible applications. Low energy consumption and long lifetime are major advantages over existing lighting solutions. White LEDs consist of a semiconductor emitting blue light, with on top of that phosphor plates that turn the blue light into yellow. What we see then, is white light. The light will be scattered by the phosphor particles, but part of it is absorbed as well. What part of the light will exit the LED, is not easy to predict. Unless you look at absorption and scattering in another way, according to Maryna Meretska and her colleagues. Theory from astronomy helps.
Detailed and fast
What makes good prediction particularly difficult: some of the light is absorbed, but re-emitted in another colour. One way is trying to define all possible light rays, and use a lot of computing time to get a result. This doesn’t give much insight in what is actually happening. A theory that is often used for light propagation in a LED, is diffusion theory. In strongly absorbing media, however, this approach isn’t valid anymore. Meretska therefore has built a setup to collect all the light around the phosphor plates, in the whole visual spectrum. Based on this, absorption and scattering can be deduced using the radiative transfer equation, well known in astronomy. This results in a full description of light propagation inside and outside the phosphor plates. Compared to a description using diffusion theory, the absorption level is up to 30 percent higher. At the same time, the method is about 17 times faster than the numerical approach.
Absorption: blue is based on diffusion theory, red is the new method, black is a numerical 'Monte Carlo' check.
These new insights, and their level of detail, can lead to powerful and predictive tools for LED designers. They help in further improving the efficiency.
Photonics
The research has been done in the Complex Photonic Systems group of UT’s MESA+ Institute for Nanotechnology, together with Philips Lighting in Eindhoven. The University of Twente has a strong concentration of research groups and facilities in the rapidly growing field of photonics.
The paper ‘Analytical modeling of light transport in scattering materials with strong absorption’ by Maryna Meretska, Ravitej Uppu, Gilles Vissenberg, Ad Lagendijk, Wilbert IJzerman and Willem Vos, will appear in Optics Express, one of the leading journals of the Optical Society. It is already online.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
September 2025 SMT007 Magazine: An Eye on India
09/02/2025 | I-Connect007 Editorial TeamIndia is on track to become the world’s fastest-growing major economy within the next two years, and that momentum is already reshaping its electronics manufacturing sector. Whether you work with Indian suppliers or serve Indian customers, chances are the country will become a bigger part of your supply chain in the near future.
AiM Future, Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
09/01/2025 | BUSINESS WIREAiM Future, a leading AI semiconductor design company, has signed a Memorandum of Understanding (MOU) with Franklin Wireless Corp., a global leader in intelligent wireless solutions, to jointly develop a lightweight AI model and a high-efficiency 1 TOPS performance AI SoC chipset.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.
MoU to Revolutionize Photonic Integrated Circuit (PIC) Device Testing with AI-Driven Solutions
08/07/2025 | PRNewswireLightium AG, MPI Corporation, and Axiomatic_AI Inc. have entered into a Memorandum of Understanding (MoU) to jointly develop the world's first Intelligent, Autonomous, and Integrated Test Solution (IAITS) for photonic devices.