-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Spotlight on Mexico
Mexico isn’t just part of the electronics manufacturing conversation—it’s leading it. From growing investments to cross-border collaborations, Mexico is fast becoming the center of electronics in North America. This issue includes bilingual content, with all feature articles available in both English and Spanish.
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Rework and Reball Challenges for Wafer Level Packages
October 16, 2017 | Lauren Cummings and Priyanka Dobriyal, Ph.D., Intel Corp.Estimated reading time: 6 minutes
Rework and reball process yield is influenced by several different factors, and can be classified into four general categories, including: (1) personnel; (2) methods; (3) materials; and (4) machine/ tooling. Figure 3 summarizes the various categories and sub-categories for a typical PCB assembly.
Figure 3: Diagram showing the factors that dictate the yield of rework and reball processes.
The personnel category represents the “human factor,” and includes handling, training, and quality control. The personnel factor is especially important for WLPs and other small form factor devices, as the components are much more fragile than standard flip-chip packages. Proper handling must be used to minimize mechanical artifacts and prevent damage to the bulk Si or dielectric layers. The methods category encompasses the process steps for rework and reball, including sample preparation, package removal from the board, solder removal from the package-side pads, and reball of the package. Prior to demount, the sample must be prepared by removing any heat spreaders, thermal grease, corner glue, or underfill. The package is then demounted from the PCB using either mechanical or thermal methods. Next, solder is removed from the package-side pads using solder wicking with a braided wire and solder tip, or using a no-contact vacuum scavenging technique. Lastly, the package is reballed using either a stencil, preform, or laser jetting method.
Materials—such as package type, PCB design, flux, underfill, and corner glue—also influence the rework and reball process yield. With higher board densities and package miniaturization, it becomes increasingly difficult to selectively heat and remove parts from a small footprint. Since WLPs do not possess a package substrate or solder mask, there is also an increased risk to damage the dielectric or even the metal redistribution layers.
Lastly, rework yield is impacted by the machines and tooling used to handle and process the package. Rework machines can vary greatly in cost and complexity—ranging from a hot air pencil and tweezers, to a fully automated rework station. Semi-automated and fully automated rework tools are expensive, but can greatly minimize the risk for thermal and mechanical artifacts. The latter is especially important for WLPs, as it is difficult to handle and secure the parts.
To read the full version of this article, which appeared in the September 2017 issue of SMT Magazine, click here.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.