-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueAll About That Route
Most designers favor manual routing, but today's interactive autorouters may be changing designers' minds by allowing users more direct control. In this issue, our expert contributors discuss a variety of manual and autorouting strategies.
Creating the Ideal Data Package
Why is it so difficult to create the ideal data package? Many of these simple errors can be alleviated by paying attention to detail—and knowing what issues to look out for. So, this month, our experts weigh in on the best practices for creating the ideal design data package for your design.
Designing Through the Noise
Our experts discuss the constantly evolving world of RF design, including the many tradeoffs, material considerations, and design tips and techniques that designers and design engineers need to know to succeed in this high-frequency realm.
- Articles
- Columns
- Links
- Media kit
||| MENU - design007 Magazine
Zuken Teams With Nano Dimension for 3D Printing Design Flow
November 25, 2017 | Andy Shaughnessy, PCB Design007Estimated reading time: 10 minutes
Mandavia: Printed electronics will be one of many technologies CR-8000 supports, and our goal is to allow engineers to freely design what they want, without the hassle of figuring out what tool can achieve a particular board technology they want to realize. So the types of opportunities we want to present to the market is that if you go with CR-8000 for your full flow, whether it's for production design or for prototyping, you will have one integrated system-level platform, and engineers across disciplines can work and collaborate together. However, we also want to make it non-disruptive to existing design environments, so if you want to augment your current flow with our products to support 3D printing, system co-design, or take advantage of any other unique areas of CR-8000, then you'll have the freedom to do that as well. Our intention is to pursue true enablement for the market.
Shaughnessy: Simon, from your side, this must help you get in more at the design level with the front-end guys.
Fried: Yes, and for us, it's a tremendous opportunity, mainly because it really helps the design community to make that transition, to be able to fully use the technology, which I think otherwise could otherwise have a steeper learning curve. It helps with that education of people to say, "Yes, this is okay, you can do it. You can still be in control. You'll know the boundaries within which you're working."
We're great at printers and materials, and there's a very big community around design and the design software, which is not our focus and collaboration on how best to serve this community is much appreciated.
Mandavia: Again, what made this partnership happen and why this was a great fit for us is not only because we're both developing new technologies for the market space to solve today and tomorrow's problems, but also the way the concepts and the disciplines fit together. For example, you brought up silver versus copper. Well, let's talk about silver and copper on a design. What about silver, copper, and gold?
Not only do you want to prototype it, but down the road you may want to do that for production for various reasons. You want to have the technology and solutions to be able to easily design for multi-material, rules by materials we call it, but also then print it very easily.
Shaughnessy: And you avoid a lot of it by not having to go through the typical assembly profiles and all this heat and everything.
Mandavia: That's exactly it.
Fried: There may be scenarios where there are interim steps where you'll find that manufacturing is perhaps hybrid. You know, you might do a bit of additive and a bit of the subtractive manufacturing. We'll need to have these approaches evaluated, worked through, have the materials be known and their properties known, and under the boundary conditions that you print them in. Traditional copper would continue to play aa key role.
It's one of these areas where it could go in so many directions. It can be a hybrid, it can be a purely additive. At the moment, it's very much a prototyping tool.
Shaughnessy: It seems like it gives you a lot more freedom because you're not having to do all the nastier stuff. They say with printed electronics one-tenth of the machines in a board shop could be used.
Fried: Certainly, you can save a lot of space. We had one site that said exactly that. "Look, we rank a printer like this as equivalent to about 2,000 square feet of space for our internal board prototyping.” So if you're running out of space, it's one option. But I think it's more about if you're running out of time, or if you have more ideas than you have the time to try, and you're missing out on developing stuff you should've explored.
Shaughnessy: And trying isn't as expensive this way, so if you make a mistake…
Fried: Yes, trying is cheaper, and nobody else ever knows about it. Failing fast and saving cheap, and also failing in private. This all encourages innovation.
Shaughnessy: It sounds like this partnership opens up a lot of opportunities.
Mandavia: That's really what we're aiming towards. There are some aspects of what we are aiming for that can be done today, and companies are taking advantage of additive manufacturing now. But I think with what Nano Dimension is offering, along with our partnership, will really open the door to endless possibilities so companies can focus on their innovation.
Also, talking about other advantages of 3D printing, we do not have to deal with hazardous materials as one example. There are many other benefits to this, and that's why we want to advocate this within the industry and drive adoption. If you think about our industry, we don't see too many compelling events, too many big shake ups, especially in printed circuit boards. This is the time that we start thinking about how to aggressively grow our market again, spur new opportunities, and 3D printing is one of those new ideas to support this.
Shaughnessy: You guys are kind of unique in that, because most of the big innovations in printed electronics have been from OEMs themselves. Because they couldn't find anybody to work with and they said, “We'll figure this out. We'll get cardboard and put traces on it or whatever.”
Mandavia: And paper dolls. People are doing all sorts of fun stuff to figure out their problems, but hopefully we can help go through this great new journey for them.
Fried: Doing that to one layer is relatively accessible and easy, and as the layers build up, you need different tools and hardware and software.
Shaughnessy: Well, thanks for speaking with me today.
Mandavia: Good seeing you again, Andy.
Fried: Thank you.
Page 2 of 2
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.