Powering the Bottom Line
April 9, 2018 | KAUSTEstimated reading time: 2 minutes

A scheme to balance risks may help realize the benefits of being able to combine complementary power technologies, such as thermal generation, wind power and energy storage. Such benefits include lower capital costs and more responsive and reliable energy delivery while leveraging renewable energy technologies.
Image caption: The challenge is the optimization of operations and electricity market participation for a VPP comprising a thermal unit such as a conventional gas-fired power plant, a wind farm, and a pumped storage hydro unit for energy storage.
Optimizing the operation of a mixed-technology power plant is vital to make such power generation profitable and reliable. Yet this is far more complex than for single-technology units due to the simultaneous fluctuations in generation from variable sources like wind, energy storage levels, and market electricity prices.
While optimization schemes have been proposed for such virtual power plants (VPPs), the existing approaches take a rigidly risk-neutral approach to dealing with uncertainty in future conditions.
Now, by integrating risk parameters into an efficient optimization program for VPP operation, Ricardo Lima and colleagues Omar Knio and Ibrahim Hoteit from KAUST have developed a platform that allows the system to be tweaked for better reliability and profitability. “Renewable energy resources are inherently uncertain,” explains Lima. “The operation and interaction of these resources with the electricity market brings uncertainty about the best ways to maximize profit.” Furthermore, "this methodology enables us to capitalize on wind ensembles from weather forecast models, accounting for the uncertainties inherent in future projections," says Hoteit.
The problem considered by Knio’s team is the optimization of operations and electricity market participation for a VPP comprising a thermal unit, such as a conventional gas-fired power plant, a wind farm and a pumped storage hydro unit for energy storage. The goal of the calculation is to predict the optimal energy output of the thermal unit and input/output from the hydro unit, with consideration for fluctuating wind conditions and electricity price in the market, that will optimize profit over the next few hours.
“The key issue for optimization is always the balance between level of detail of the model and the capacity for obtaining optimal solutions from it,” says Lima. “In this work, we propose efficient approaches to solve large problems and push the limits of the problem sizes we can solve in reasonable computational times.”
This is a large-scale calculation problem with many variables even before the inclusion of risk, which presents significant challenges for finding the most accurate solution. To be able to consider the additional complexity of risk, the team had to develop an efficient calculation scheme, which they achieved by calculating the two parts in parallel. The result is a framework that can accommodate both conservative risk-avoidance and aggressive risk-seeking approaches to maximize VPP profits.
“Our optimization model supports the calculation of risk-averse decisions that hedge against low profits due to the uncertainty in future wind power generation and electricity prices,” says Lima.
Suggested Items
SMT007 Magazine July—What’s Your Competitive Sweet Spot?
07/01/2025 | I-Connect007 Editorial TeamAre you in a niche that’s growing or shrinking? Is it time to reassess and refocus? We spotlight companies thriving by redefining or reinforcing their niche—what are their insights? In the July 2025 issue of SMT007 Magazine, we spotlight companies thriving by redefining or reinforcing their niche and offer insights to help you evaluate your own.
Global Dry Film Photoresist Market Set for Robust Growth with Expanding Semiconductor Ecosystem
06/24/2025 | PRNewswireIn 2024, the global market size of Dry Film Photoresist was estimated to be worth US$939 million and is forecast to reach approximately US$1191 million by 2031 with a CAGR of 3.5% during the forecast period 2025-2031.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.
Roll-to-Roll Technologies for Flexible Devices Set to Grow at 11.5% CAGR
06/11/2025 | GlobeNewswireAccording to the latest study from BCC Research, the “Global Markets for Roll-to-Roll Technologies for Flexible Devices” is expected to reach $69.8 billion by the end of 2029 at a compound annual growth rate (CAGR) of 11.5% from 2024 to 2029.
PC AIB Shipments Follow Seasonality, Show Nominal Increase for Q4’24
06/06/2025 | JPRAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 9.2 million units in Q1'25 and desktop PC CPUs shipments decreased to 17.8 million units.