-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Solving Reliability and Thermal Management Challenges in Automotive Electronics
May 1, 2018 | Stephen Las Marias, I-Connect007Estimated reading time: 3 minutes
Paul Salerno is the global portfolio manager for SMT assembly solutions at Alpha Assembly Solutions. He has more than a decade of experience in the electronics assembly industry in roles such as application engineering, project management, and product management. Paul is responsible for developing and executing strategies for the automotive and consumer electronics market segments, ensuring Alpha’s products continue to meet the evolving needs of their global customers.
In this interview with SMT007 Magazine, Paul discusses the growing automotive electronics industry, its impact on the soldering materials business, and how Alpha helps customers address the new challenges and requirements in the automotive market.
Stephen Las Marias: The automotive electronics market has been one of the driving forces of the electronics manufacturing industry. What is the impact of this on your business?
Paul Salerno: The solder market continues to flourish, and we see an upward demand for automotive electronics from OEMs due to the sophistication required for modern vehicles. The continual adoption of the HEV/EV powertrain, advanced driver-assist systems (ADAS), and in-cabin electronics is driving the need for more sophisticated assembly solutions. For example, advanced detection systems such as lane departure warning, adaptive cruise control, LIDAR, RADAR, and vision systems that were once reserved for luxury vehicles are now becoming more common in the average consumer vehicle. Each one of these technologies presents itself with unique challenges that require customized solutions.
Las Marias: What are some of these “unique challenges”?
Salerno:Reliability, of course, is a major driving factor to the successful implementation of an assembly material in automotive electronics. Specifically, exposure to high-temperature and high-vibrational environments for powertrain and advanced detection devices creates a need for assembly materials that exhibit excellent creep resistance. The combination of the end product’s performance requirements as well as exposure to environmental stresses is driving increased reliability demands on the assembly materials.
Thermal management is critical from both application and processing perspectives. In
powertrain applications facing high-operating temperatures, the ability to develop creep resistant alloys capable of facing temperature ranges from -40°C to 150°C is driving the need for high-reliability alloys such as InnoLot. Thermal management from a processing perspective is driving the need to develop low-temperature alloys capable of high reliability to prevent component warpage during reflow. Alpha’s HRL1 alloy exhibits excellent mechanical reliability relative to SAC305 while reducing processing temperatures by 50°C. This has proven to have a profound impact on reduction of component warpage leading to increased yields and enhanced product performance.
Las Marias: How do you help ensure the reliability of electronics assemblies for cars?
Salerno:The answer to this question really begins with the relationship we maintain with our customers. Maintaining a strong voice of customer enables Alpha to develop next generation products to meet the upcoming needs of the marketplace. Having a global R&D and technical service footprint allows Alpha the flexibility to quickly address customer needs, albeit on a production line or in the lab. We maintain a cutting edge analytical and diagnostic lab capable of characterizing assembly performance through use of equipment such as SEM/FEM, as well as conducting field tests such as thermal cycling and surface insulation resistance to qualify the performance of our products in a given application. For example, the ability to measure electrochemical migration and corrosion resistance of our solder pastes on fine-pitch components ensures the reliability of our products in advanced detection devices.
Las Marias: Are there new requirements being placed upon you by your customers dealing with automotive electronics?
Salerno: As always, demands are unique to the given application. The need for assembly materials capable of meeting operating temperatures above 120°C is commonplace for devices located closest to heat-generating sources of the vehicle. We are seeing thermal cycling demands of -40°C/150°C with requirements above 2,000 cycles for these powertrain applications. For advanced safety detection systems, not only are thermal cycling requirements increasing, but there is a growing need for fine pitched electrochemical reliability. It is not uncommon to see power density increasing and component sizes shrinking as these advanced detection devices become more sophisticated and miniaturized. Finally, for in-cabin electronics, a focus on total cost of ownership is driving the need for low-temperature, high-reliability alloys.
To read the full article, which appeared in the April 2018 issue of SMT007 Magazine, click here.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.