-
-
News
News Highlights
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current Issue
Production Software Integration
EMS companies need advanced software systems to thrive and compete. But these systems require significant effort to integrate and deploy. What is the reality, and how can we make it easier for everyone?
Spotlight on India
We invite you on a virtual tour of India’s thriving ecosystem, guided by the Global Electronics Association’s India office staff, who share their insights into the region’s growth and opportunities.
Supply Chain Strategies
A successful brand is built on strong customer relationships—anchored by a well-orchestrated supply chain at its core. This month, we look at how managing your supply chain directly influences customer perception.
- Articles
- Columns
- Links
- Media kit
||| MENU - smt007 Magazine
Under the Hood: Solder Joint Reliability
May 21, 2018 | Burton Carpenter, NXP Semiconductors Inc.Estimated reading time: 3 minutes
The automotive industry continues to drive increased solder joint reliability (SJR) for under-the-hood applications. One aspect of SJR, temperature cycle on board (TCoB) assesses thermal fatigue resistance of solder interconnection between component and PCB during temperature excursions. In some instances, requirements on number of cycles to first failure have increased 2x over previous product generations.
It has been long established that packages using NSMD BGA pads were more resilient than ones with SMD pads to fatigue-induced solder joint cracks. However, NSMD pads in our previous investigations on 292MAPBGA and 416PBGA packages failed sooner in AATS testing due to an alternate failure mode: substrate Cu trace cracks.
Detailed failure analysis revealed that these cracks occurred exclusively on BGA pads in the die shadow. This led to the idea that a mixed design—NSMD pads outside the die shadow, while maintaining SMD pads under the die—could perform better than a pure SMD design.
Separately, lower CTE substrate dielectric materials were under investigation as a means to reduce package warpage. Below Tg, the mold compound CTE is 9ppm/°C. The standard substrate dielectric CTE is 16ppm/°C, resulting in considerable package warpage at lower temperatures. It was hypothesized that lowering the substrate dielectric material CTE to 11ppm/°C would reduce package warpage which in turn should reduce solder joint strain thereby increasing solder joint lifetime.
Table 1: Package details. DOE variables in yellow.
A six-cell experimental matrix was run to study the impact of these two variables (substrate dielectric material and package pad design type.) These experiments used standard daisy-chain temperature cycle testing methodology. Assemblies were monitored in situ to detect failures as they occurred, and 2-parameter Weibull failure distributions were fit to the data. Various metrics derived from the Weibull fits were regressed against the DOE variables to determine which had significant impact on solder joint lifetime, and to what degree.
Crack growth was assessed using cross-section and dye-and-pry techniques on unmonitored assemblies that were removed from the chambers at fixed read points. Conclusions on the impact of the parameters were determined based on the totality of electrical test and crack growth data.
EXPERIMENTAL:
Design
The package attributes are summarized in Table 1. Those highlighted in yellow were varied in the experiment. The substrate dielectric details are in Table 2.
BGA arrays are shown in Figure 1. The baseline SMD design in Figure 1a contained only SMD pads. Hybrid-A in Figure 1b used the same footprint, but the outer four rings were substituted with NSMD pads, while the pads at the die edge were maintained as SMD.
Table 2: Substrate dielectric mechanical properties.
By contrast, the outer six rings were NSMD for Hybrid-B, encompassing the die edge. In all cases, the SMD pad SRO (solder resist opening) was 0.45mm. To compensate for solder wetting down the pad sidewall, the NSMD pads on the hybrid designs were slightly smaller to produce a similar ball height.
These packages were daisy-chain test vehicles with pairs of solder joints electrically connected. A complete circuit was created by connecting pairs on the PCB side that were skipped on the package. All solder joints were monitored as one “net.” A failure on any solder joint meant the remaining solder joints could no longer be electrically monitored.
Figure 1: BGA footprint showing arrangement of SMD and NSMD pads for the three different designs.
Except where parameters were intentionally varied, the daisy-chain packages were mechanically similar to the final products: same die size, area and thickness. Similarly, the same material sets were used: mold compound, die attach, and assembly factory.
To read the full version of this article, which appeared in the April 2018 issue of SMT007 Magazine, click here.
Testimonial
"Your magazines are a great platform for people to exchange knowledge. Thank you for the work that you do."
Simon Khesin - Schmoll MaschinenSuggested Items
BTU International Earns 2025 Step-by-Step Excellence Award for Its Aqua Scrub™ Flux Management System
10/29/2025 | BTU International, Inc.BTU International, Inc., a leading supplier of advanced thermal processing equipment for the electronics manufacturing market, has been recognized with a 2025 Step-by-Step Excellence Award (SbSEA) for its Aqua Scrub™ Flux Management Technology, featured on the company’s Pyramax™ and Aurora™ reflow ovens.
On the Line With… Ultra HDI Podcast—Episode 7: “Solder Mask: Beyond the Traces,” Now Available
10/31/2025 | I-Connect007I-Connect007 is excited to announce the release of the seventh episode of its 12-part podcast series, On the Line With… American Standard Circuits: Ultra HDI. In this episode, “Solder Mask: Beyond the Traces,” host Nolan Johnson sits down with John Johnson, Director of Quality and Advanced Technology at American Standard Circuits, to explore the essential role that solder mask plays in the Ultra HDI (UHDI) manufacturing process.
Rehm Wins Mexico Technology Award for CondensoXLine with Formic Acid
10/17/2025 | Rehm Thermal SystemsModern electronics manufacturing requires technologies with high reliability. By using formic acid in convection, condensation, and contact soldering, Rehm Thermal Systems’ equipment ensures reliable, void-free solder joints — even when using flux-free solder pastes.
Indium Experts to Deliver Technical Presentations at SMTA International
10/14/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly industry, Indium Corporation experts will share their technical insight on a wide range of innovative solder solutions at SMTA International (SMTAI), to be held October 19-23 in Rosemont, Illinois.
Knocking Down the Bone Pile: Revamp Your Components with BGA Reballing
10/14/2025 | Nash Bell -- Column: Knocking Down the Bone PileBall grid array (BGA) components evolved from pin grid array (PGA) devices, carrying over many of the same electrical benefits while introducing a more compact and efficient interconnect format. Instead of discrete leads, BGAs rely on solder balls on the underside of the package to connect to the PCB. In some advanced designs, solder balls are on both the PCB and the BGA package. In stacked configurations, such as package-on-package (PoP), these solder balls also interconnect multiple packages, enabling higher functionality in a smaller footprint.