-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueIntelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
IPC APEX EXPO 2025: A Preview
It’s that time again. If you’re going to Anaheim for IPC APEX EXPO 2025, we’ll see you there. In the meantime, consider this issue of SMT007 Magazine to be your golden ticket to planning the show.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
3D Printing and Additive Manufacturing in PCBA
May 28, 2018 | Zohair Mehkri, David Geiger, Anwar Mohammed, and Murad Kurwa, FlexEstimated reading time: 6 minutes
Contrary to popular belief, 3D printing and additive manufacturing are not the same thing; however, they can be used interchangeably for the sake of ease. According to ASTM F2792-12a “Standard Terminologies for Additive Manufacturing Technologies,” 3D printing is “the fabrication of objects through the deposition of a material using a print head, nozzle, or other printer technology.”
The process starts with a 3D model drawing that is done on any standard CAD software. This 3D model file is then converted into a stereolithography file format by either the native program or a third-party file converter. Some printers have this file conversion capability as part of their software suite for their printers. The file is then converted into GCode or a language that the printer can understand, essentially creating the file into cross sectional slices of the part. This step is commonly known as “slicing.”
Once the slicing of the drawing has been done the printer is ready to start the print. For nearly all 3D printers, the above process is the same, with the printing process itself being the main differentiator. In a fused filament fabrication printer, once the 3D drawing is sliced, the printer can begin printing. The main components of the printer are, the print bed, the extruder, the hot-end, and the material. Material for this technology usually comes in a wire form on a spool. This wire filament is fed into the extruder, the extruder uses torque and pinch to control the speed of the filament being fed into the hot-end. Once the filament is in the hot-end, it is melted using heat.
The melted material is forced out of the hot-end by the extruder that is pushing in more material from the top. The hot-end, usually made of aluminum, deposits the melted material onto the build plate in a designated pattern as dictated by the software. As the material is being deposited by the hot-end, the build plate is moving in a X-, Y- or Z-axis depending on the part requirements of what is being printed. In some printers the build plate will stay stationary and the hot-end will move in a Cartesian plane to create the print. This process describes fused filament fabrication (FFF), which is one of the technologies that the company currently employs.
Fused filament fabrication currently is used mainly for plastic materials. If metal printing is required, direct metal laser sintering is utilized to print metal parts. The process of creating a 3D model to be understood by Direct Metal Laser Sintering printers is as described above; however, the process of printing is vastly different. Metal printers are usually larger in footprint due to the high-quality components and the auxiliary processes required to ensure effective operation of the machine as well as quality of the print. The main components of a metal are the build plate, re-coater, laser and powder.
Before a metal part is printed, the build chamber will fill up with an inert gas, usually argon. This is to ensure that no oxidation occurs during the process. The build plate where the powder is residing, and the re-coater blade will be leveled. This can be done manually, but most printers can be automatically calibrated to level before a print starts. After the components are leveled, the print can start. A laser will sinter the powder in the cross-sectional geometry of the part. Once the sintering for that level has finished, a re-coater blade that was located off to the side of the build area will move over the sintered layer and coat a new layer of powder on top.
The layer of powder that is re-coated onto the sintered layer is very important to the integrity and quality of the print. If too much powder is re-coated, the layer below and the layer above may not be sintered together well by the laser. If there is too little powder, the laser might sinter already sintered powder, causing varying layer heights in the print. The even distribution of powder and the correct amount of powder is a key area that currently affects how the powder is re-coated on top of itself. Layer by layer powder will be re-coated and sintered by the laser until the part is complete.
Page 1 of 2
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/09/2025 | Andy Shaughnessy, Design007 MagazineTrade show season is wrapping up as we head into summer. Where has the time gone? I hope you all get the chance to take a vacation this year, because I know you’ve earned one. Speaking of which, when was my last vacay? If I can’t remember, it’s probably time for one. It’s been a busy week in electronics, with fallout from the back-and-forth on tariffs taking up most of the oxygen in the room. We have quite an assortment of articles and columns for you in this installment of Must-Reads. See you next time.
Nick Koop Launches IPC Flex Design Class
05/06/2025 | Andy Shaughnessy, Design007 MagazineNick Koop is director of flex technology for TTM Technologies, and he’s been a staple of IPC’s flex committees for decades. He’s also a longtime flex design instructor, and he’s about to debut a new IPC class, Flex and Rigid-Flex Design for Manufacturability, which will run May 12–21. In this interview, Nick tells us about this new class and what attendees can expect to learn.
ASC Sunstone Circuits to Exhibit at PCB Detroit 2025
05/05/2025 | ASC SunstoneASC Sunstone Circuits will be exhibiting at the inaugural session of PCB Detroit to be held on June 2 and 3 on the campus of Wayne State University.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
A Visit With ‘Flexperts’ Mark Finstad and Nick Koop
05/01/2025 | Joe Fjelstad, Verdant ElectronicsAt IPC APEX EXPO 2025, I chatted with seasoned flex experts Mark Finstad and Nick Koop about "Flexperts" and their roles as leading educators and in the realm of standards development for this increasingly indispensable electronic interconnection technology. They have been teaching about lessons learned and how to successfully navigate the “seas” of flexible circuits to help their students avoid the hazards that have taken down many of their predecessors in the past.