-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Modeling an SMT Line to Improve Throughput
June 6, 2018 | Gregory Vance, Rockwell Automation Inc., and Todd Vick, Universal Instruments Corp.Estimated reading time: 5 minutes
One of the major challenges for an electronics assembly manufacturing engineer is determining how an SMT machine will impact throughput. Typically, an SMT equipment supplier will ask for a few (5-10) products to simulate the throughput capability of their machine. Unfortunately, if the engineer works in a high-mix, low-volume environment, he may need to know the impact of a new machine on 1,000 or more products. Currently, there are no simulation tools to effectively model this. This is confirmed in the 2015 IPC International Technology Roadmap for Electronics Interconnections, which states, "In order to better deal with the demands for increased interconnection density and respond to market demands for better return on capital investment in assembly equipment, there is a need within the manufacturing industry for continued improvement in tools and software for modeling and simulation. Needs in this area include better methods of load balancing and improved machine utilization. The tools for determining the balance on assembly lines will need to be flexible to handle the mix of assembly types that manufacturers now face."
Rockwell Automation partnered with Universal Instruments to develop a tool to model a large quantity of products and the impact of varying SMT line configurations. The information used for the modeling includes placements per panel and components placed per hour. With these tools, an electronics assembly plant can be analyzed to identify improvement opportunities and perform "what if" analysis to model impact of machine changes.
Goals for the SMT Line Model
1. Determine the right machine for the product mix.
2. Determine if products are running as fast as they should.
3. Determine if electronics assembly products are built on the optimal line configuration. This is crucial in plants with multiple line configurations.
Development of the SMT Machine Model
1. Discovery that machine cycle times were poor
After sample product simulations were run by Universal Instruments, it was discovered that observed cycle times were two to three times longer than simulated cycle times. This led to a focused effort to understand why. A kaizen event was held to map out the process and observe product builds. Several items that impacted the product cycle time were uncovered. These items were:
1. Component library placement speed slowed down.
2. Imbalance between placement beams/heads due to not having enough nozzles to pick and place the required component packages for the products.
3. Bypassed nozzles and spindles.
4. Large quantity of placements from a single component input.
5. Panel transfer rate into and out of the machine slowed down.
6. Poor optimization and component split between machines on an SMT line.
7. Operator variation in responding to the process.
The most significant item impacting cycle time was not having the necessary quantity of nozzles available for the mix of component packages for the products that the machine/line was building. To maximize flexibility to move products between lines, machines of the same type were equipped with a standard nozzle configuration. The nozzle configurations were changed only when a new component package was needed. To address this problem, a regular nozzle review was implemented to ensure the machines have sufficient nozzles available to optimize the machine programs.
Products were reviewed for the above issues. As items were addressed, the observed cycle times were reduced to align with the simulated cycle times.
2. Realization that cycle time does not represent SMT machine utilization
Cycle time represents how a product is running compared to a benchmark but does not reflect utilization of a machine based upon its throughput capability. For pick and place machines, throughput can be measured in components placed per hour (CPH).
Table 1. Sample of range of placements per panel to run IPC and manufacturer tests.
Manufacturers provide CPH specifications for SMT machines in two ways. The first method is what is often called "Maximum CPH", which represents the maximum speed the manufacturer was able to achieve and the second is based on "IPC 9850", which has CPH categorized by package type. The “placements per panel” required to run these tests are shown in Table 1.
The "IPC 9850" performance tests are useful to compare equipment models and manufacturers to each other, but they do not necessarily represent the products manufacturers are building. This complexity can be understood by comparing Table 1 to the sample product complexity of global product mix in Table 2.
Page 1 of 2
Suggested Items
TRI at TMS Electronic Announces Open Day Event
01/20/2025 | TRITMS Electronic, TRI's distributor, is excited to invite industry professionals, partners, and clients to its Open Day Event (Jornada de Puertas Abiertas), taking place from February 11-13, 2025, in Barcelona, Spain.
Meet Diana Radovan, IPC’s Global Sustainability Policy and Advocacy Lead
01/17/2025 | Marcy LaRont, I-Connect007Dr. Diana Radovan joined IPC in August 2024 as the advocacy lead for sustainability policy, a role that requires awareness of global policy activities. From the IPC Munich office, Diana has been busy working as a policy analyst with Dr. Kelly Scanlon, IPC lead sustainability strategist. In this interview, she shares her background, her role at IPC, and what she wants to accomplish for the benefit of our industry.
TRI to Join SMTA Austin Expo 2025
01/16/2025 | TRITest Research, Inc. (TRI), the leading provider of test and inspection systems for the electronics manufacturing industry, is pleased to announce plans to exhibit at the SMTA Austin Expo 2025, scheduled to take place on February 6, 2025, at the Travis County Exposition Center.
Hot Off the Press: Explore the New Issue of IPC Community
01/14/2025 | IPC Community Editorial TeamThe latest digital copy of IPC Community is now ready to view. Each quarter, IPC Community provides exclusive interviews and practical tips on what’s happening with IPC and its members. Find stories on IPC student leadership, successful women in business, the trouble with tariffs, the inside workings on an IPC mentorship duo, standards updates, and so much more.
IPC Announces New Training Course: PCB Design for Manufacturability
01/10/2025 | IPCThis three-week online program, taught by an industry expert with over 40 years of experience, is designed to equip PCB designers with the knowledge and skills to reduce or eliminate design, documentation, and capability issues that often arise during PCB fabrication.